新直線形鋼矢板「FLJ[®]」の製造技術の開発

Development of New Straight Type Steel Sheet Pile "FLJTM"

杉田和範SUGITA KazunoriJFE スチール西日本製鉄所(倉敷地区)条鋼部条鋼技術室主任部員(副課長)高嶋由紀雄TAKASHIMA YukioJFE スチールスチール研究所圧延・加工プロセス研究部主任研究員(副部長)・博士(工学)須崎健太郎SUZAKI KentaroJFE スチール西日本製鉄所(倉敷地区)鋼材商品技術部形鋼室主任部員(課長)

要旨

JFE スチールでは従来の直線形鋼矢板(FL)と同等の有効幅・継手引張強度を有し,鋼材重量を14%削減した 新直線形鋼矢板;Jフラットパイル[®]JFESP-FLJを開発した。開発にあたり,ブルームを素材とし,製品形状への圧 延を形鋼工場単独で行う1ヒート製造プロセスを立案した。有限要素解析を活用して孔型形状とその圧延条件を設 計し,目標の断面形状となる製品の圧延に成功した。製品を用いて継手引張試験を行い,目標の継手引張強度を確 保できることを確認した。さらに,実機における圧延条件の最適化を行い,冷間での曲がりのプレス矯正技術を開 発した。これらの結果,FLJ[®]を安定して大量に製造する技術を確立した。

Abstract:

JFE Steel has developed a new straight type steel sheet pile "FLJTM" that has the same effective width and joint tensile strength as the conventional "FL" with the weight of steel reduced by 14%. For the product development, a single-heating manufacturing process from CC bloom to products at a wide flange beam mill was adopted. Based on FEM simulations the groove profiles were optimized and the product with the target cross-sectional shape was successfully rolled. Joint tensile tests of the product were conducted, and it was confirmed that the target joint tensile strength could be secured. In addition, JFE steel has developed improved manufacturing techniques, such as optimizing rolling conditions of the mill, and straightening press technology. As a result, a stable mass production of FLJ was established.

1. はじめに

JFE スチールでは,新しい直線形鋼矢板;Jフラットパイ ル[®] JFESP-FLJ (以下 FLJ[®])(**写真 1**)を開発した。FLJ は継 手を最適形状に改良・小型化することで,有効幅とウェブ 厚と継手引張強度を従来の直線形鋼矢板 FL と同等としつ つ,鋼材重量を 14%削減している。

FLJ は直線形鋼矢板としては国内最軽量であり,高い経済 性が期待できるため,従来の鋼矢板セル工法での適用に加 え,様々な土木用途での構造部材として活用されている。 活用例として,「アークジャケット工法」¹⁾,「アーバンウォー ル[®]工法」²⁾ および「J ドメール[®]」³⁾ などがある。

本論文では,この FLJ の製造技術の開発について,その 製造プロセス,有限要素法解析を活用した孔型と圧延条件 の設計,実機での圧延・矯正技術の確立について詳細に報 告する。

2. FLJ[®]の製品形状と製造プロセス

2.1 FLJ[®]の製品形状

図1にFLJと従来のFLの継手断面形状を重ねて示す。 FLJは継手を小型化することで,FLに対して軽量化を達成 している。継手の小型化に当たっては,継手引張強度を従 来と同等以上とするために,継手引張の有限要素解析を行

写真 1 FLI[®]の外観 Photo 1 Appearance of FLJTM

2021年3月4日受付

Fig. 1 Shape of joint

い,最適な継手形状を設計している4)。

2.2 FLJ[®]の製造プロセス

図2に従来のFLおよびJES[®]形鋼の製造プロセスを示す⁵⁾。 まず,鋼片工場の分塊圧延機(BM ミル)で連続鋳造製の 矩形素材(CC ブルーム)をH形断面となる粗形鋼片に圧 延する。次にこの粗形鋼片を形鋼工場に搬送し,形鋼工場 のブレークダウン圧延機(BD ミル),中間圧延機(S1 ミル), 仕上げ圧延機(SF ミル)で順に圧延し製品化している。鋼 片工場と形鋼工場のそれぞれで素材を加熱する必要がある2 ヒート圧延プロセスであり,省エネルギーやリードタイム短 縮の観点から,改善が必要であった。

そこでFLJでは、図3に示すとおり、形鋼工場単独でブルームから製品への圧延を行う1ヒート製造プロセスとした。造形のための孔型数を確保するため、中間圧延について、ハット形鋼矢板と同様に⁶⁰、S1ミルとS2ミルの2台でのタンデム圧延を行うものとした。

FLJの製造プロセスの概要を以下に説明する。まず BD ミ ルでは、矩形のブルームを素材として、4つの孔型で断面形 状が略 H 形となる粗形鋼片への圧延を行う。続いて S1 ミル と S2 ミルでは、合計 6 つの孔型で各部の厚みを減じていく とともに、継手部となる素材の両端部分の形状を成型する 圧延を行う。この中間圧延は、先述のとおりタンデム圧延と することで圧延時間の短縮を図り、圧延途中での材料の温 度低下を抑制している。最後の SF ミルでは、3 つの孔型で 主として副爪の曲げ成形圧延を行い、製品断面形状とする。

3. FEM を活用した孔型形状の決定

3.1 孔型形状の考え方

FLJの各孔型形状の設計に対して、有限要素法(FEM) 解析を活用した。まず製品断面形状から使用する素材を決 定した。FLJの場合は矩形のブルームを素材とした。次に、 配置できる孔型数を想定し、各孔型の概略設計を行った。 そして、これらの孔型での圧延について FEM 解析を行い、 想定した断面形状が得られるかを評価した。この評価結果 から、孔型形状を修正していき、最終的な孔型形状とその 圧延条件を決定した。

3.2 圧延解析モデル

圧延解析には、汎用のFEM 解析プログラム Abaqus Explicit 6.12 を使用した。図4 に解析モデルの一例を示す。 FLJ の断面の左右対称性を考慮し、左右対称の1/2 モデル とした。初期長さ2000 mm の素材を圧延入側に配置し、こ の素材に所定の初速度を与え、回転する剛体ロール間に噛 みこませて全長を圧延する、という3次元の弾塑性解析モ デルである。実圧延におけるテーブルローラとエプロンを模 擬するために、材料の下側には剛体のテーブルを配置した。

表1に主な解析条件を示す。材料は炭素鋼を想定し,熱間での変形抵抗には美坂の式⁷⁾を用いた。圧延変形による ひずみについては,高温での圧延のため再結晶が起こると 仮定し,1パスごとにひずみをリセットし,圧延後の長手中 央断面形状を次の孔型での圧延前断面形状とした。

ロールの回転速度は 40 rpm, ロールと圧延材との摩擦条 件はクーロン摩擦とし, 摩擦係数は 0.3, テーブルと圧延材 の摩擦係数は 0 とした。

3.3 解析結果

FEM 解析に基づき孔型形状を修正した例を以下に述べる。図5(a)に当初草案形状のK6孔型でのFEM 解析結果

図4 解析モデルの概要 Fig. 4 Analytical model

表	₹1	解析条件
Table 1	Ar	nalysis condition

Solver	Abaqus Explicit 6.12
Model	3D, 1/2Model
Material	Plain carbon hot-rolled steel
Roll rotational velocity	40 rpm
Contact condition; Material - Rolls	Coefficient of friction = 0.3
Contact condition; Material - Table guide	Coefficient of friction = 0.0

を示す。主爪上部で「噛み出し」が発生していた。圧延前 における主爪部分の断面積が過大であることが原因であり, K6 孔型より上流側の孔型形状を見直し,主爪部の断面積を 小さくする必要があることが判明した。そこで上流側の孔型 の継手下端部の断面積を減少させるように孔型形状を修正 した。図5(b)に,修正した条件で再度解析した K6 孔型 のFEM 解析結果を示す。噛み出しがなくなり,目標とする 断面形状が得られた。

このように, K12 から K1 までの 12 個の孔型の圧延に対 して FEM 解析を行い, 孔型形状を順に適正化していった。

4. 実機圧延技術の確立

4.1 実機試圧延

前章までの検討から孔型形状を決定し,実機の孔型ロー ルを製作し実機試圧延を行った。図6に代表的な製品の継 手断面形状を示す。製品の断面スタンプは,実線で示した 継手の設計形状とよく一致しており,目標どおりの断面形状 となる製品の圧延に成功した。

次に,試圧延材から継手引張試験片を切り出し,継手引 張強度を測定した。継手引張試験は**写真2**に示すように, 幅 100 mm,長さ 300 mmのFLJ 継手2体を噛み合わせ,そ の両端部に引張力を作用させる方法とした。また荷重は破 壊まで単調に載荷した。

図 6 製品の継手断面形状 Fig. 6 Joint cross section of product

図7に母材の降伏応力で整理した継手引張試験結果を示 す。継手引張強度の実績は4.7~5.3 MN/m であり JIS 規格 3.92 MN/m を十分に満足することが確認できた。

写真 2 継手引張試験 Photo 2 Picture of tensile test

4.2 圧延条件の最適化

実機で工業的な量産技術を確立するために,様々な製造 技術の向上策を実施した。はじめに,所定の継手形状を安 定製造するための厚み管理の適正化について述べる。

FLJの主爪部に対して管理すべき寸法・形状の項目として, 玉幅寸法と主爪上部の噛み出し有無がある。中間圧延段階 で主爪部の断面積が少ない場合,孔型の主爪圧延部に対し て材料が未充満となり結果として製品の玉幅が不足し,逆 に中間圧延段階で主爪部の断面積が過多の場合,製品の主 爪上部に噛み出し痕が発生する場合がある。

そこで,粗圧延終了時(K10圧延)のウェブの厚みを変 化させ,K8圧延時点での継手の断面積にどのような影響を 与えるか調査するFEM解析を実施した。

解析では,K10 孔型仕上がり時点でのウェブ厚として2 水準を想定した。K10 孔型での圧延時点で材料の継手部も 孔型に充満していると仮定すれば,K10 時点ではウェブ厚

Fig. 8 Analytical result; cross section of K10-pass and K8-pass

が厚い条件のほうが継手部の断面積も大きい。この2水準 の材料をK9孔型およびK8孔型で圧延する解析を行った。 この解析ではK8孔型での圧延後のウェブ厚が等しくなるよ うに設定し,K8圧延後の継手断面積を比較した。図8にこ の結果を示す。K10時点でウェブ厚みが厚く継手断面積が 大さい条件のほうが,K8圧延後には継手部の高さ寸法が小 さくなり断面積も小さくなっている。この理由は,K9およ びK8孔型での圧延時に、ウェブ部分の圧下量が大きいと圧 延によるウェブの長手方向への延伸が大きくなり,これに合 わせて継手部も長手方向に延伸し幅広がりが小さくなるた めと考えられる。

この解析結果に基づき K10 圧延時点でのウェブ厚の管理 値を設定し、安定した継手部の形成を実現した。

実機圧延に当たっては、ハット形鋼矢板の圧延で導入した圧延のパス間で圧延ロールの傾きを調整して圧延での曲がりを抑制する「パス間レベリング制御」⁷⁾をFLJの中間 圧延と仕上圧延にも適用した。

また,これに加え

- ・BD 圧延後の材料のクロップ(材料の長手方向端)カット量の適正化
- ・材料と圧延ガイドとの隙間管理の厳格化
- ・各設備の隙間管理の厳格化とその標準化

等も行い、量産圧延技術を確立した。

5. プレス矯正技術の開発

5.1 プレス矯正の考え方

FLJの実機圧延技術の開発と並行して、精整工程でも製品の左右方向の曲がりを冷間矯正する技術を開発した。

既存のU形鋼矢板では、ローラー矯正後に長手左右方向 の曲がりが残存している場合、プレス矯正装置を用いて3 点曲げの要領で曲がりを修正している。3 点曲げを行う際の 押し金型および受け金型は、製品外面の平坦部であるフラ ンジ部、あるいは継手の根本部に当接させることができる。

これに対し, FLJ をはじめとする直線形鋼矢板は,フランジが存在しないため曲がりをプレス矯正するための押圧・保持部が無く,プレス矯正が不可能であると考えられてきた。

そこで,押し金型および受け金型を継手部に当接させて 曲がりの修正を行うこととした。まず,横押しで材料に変形 ひずみの付与が可能か検証した。継手にかかる応力σは(1), (2)式で算出される。

$\sigma = M/Z \cdots$	 (1)
M=PL/4	 (2)

ここで M は曲げモーメント, Z は断面係数, P は荷重, Lは 2 つの受け金型の間隔である。FLJ の軸方向の断面係数 Zy は 846 cm³ であり, Lを 2 m で設定し, P=874 kN で横 押しすると, 継手には σ =463 N/mm² の応力を負荷できる。

これは FLJ の降伏点 295 N/mm²を上回るため,塑性ひず みの付与が可能である。そこで,金型と継手部を当接させ るため,FLJ 専用の金型を開発した。図9 に FLJ 専用金型 の模式図を示す。継手の外面と当接すると継手が変形する 懸念があるため,継手の内側に当接する設計とした。

5.2 実機矯正実験

図10に、専用金型を用いたプレス矯正の模式図を示す。 押し金型と受け金型に専用の金型を設置し、面外変形と座 屈を防ぐため、抑え金型を押し金型前に設置した。実機で の矯正では、まず長手端部で3点曲げ矯正を開始し、材料 を1mずつ長手方向に搬送していき、その都度3点曲げ矯 正を行うという方法を採用した。この方法で、矯正した結果、 面外変形や座屈は発生せず、曲がりの矯正が可能であるこ とが実証できた。図11に代表的な製品の矯正前後の曲がり 量を示す。曲がり量を低減することに成功し、製品の真直 精度向上を達成した。

図 9 FLI[®]専用金型の模式図 Fig. 9 Die for FLJTM

図 10 専用金型を用いたプレス矯正方法 Fig. 10 Method for straightening of FLJTM with die for FLJTM

Fig. 11 Result of press straightening

6. おわりに

本報では、当社で開発した新直線形鋼矢板(FLJ)の製造 プロセス、FEM 解析を活用した孔型設計、圧延技術、プレ ス矯正技術などについて述べた。その要約を以下に記す。

- (1) 継手を小型化することで、従来と同等の有効幅・継手 引張強度を有し、鋼材重量を14%削減(国内最軽量) することに成功した。製造プロセスは、形鋼工場単独 でブルームから製品への圧延を行う1ヒートプロセスと した。
- (2) FEM 解析を活用し,各孔型形状の設計を行った。その 結果,目標どおりの断面形状となる製品の圧延に成功 した。
- (3) 以下に示す圧延条件の最適化を実施し,量産圧延技術 を確立した。

- (a) K10 圧延後のウェブ厚の管理値の設定
- (b) パス間レベリング制御の FLJ の中間圧延と仕上圧延 への適用
- (c) BD 圧延後の材料のクロップ(材料の長手方向端)カッ ト量の適正化
- (d) 材料と圧延ガイドとの隙間管理の厳格化
- (e) 各設備の隙間管理の厳格化とその標準化
- (4) 専用の金型を開発し、プレスによる曲がり矯正技術を 確立した。

FLJ は,高い品質,高い信頼性,優れた経済性を有してい ることから,様々な用途の土木建築材料に適用されている。 今後もユーザーニーズに対応した新形鋼とその製造技術の 開発に取り組んでいく。

参考文献

- 田中祐人,塩崎禎郎,末田明.アーク矢板土留め付きジャケット岸壁の開発. JFE 技報. 2010, no. 25, p. 51-59.
- 2) 松岡馨,松井良典,大場雄登.都市型圧入ケーソン「アーバンリング

工法[®]・アーバンウォール[®]工法」. JFE 技報. 2019, no. 43, p. 40-45.

- 3) 土留め用高剛性壁体「Jドメール[®]」. JFE 技報. 2019, no. 43, p. 100-102.
- 4) 恩田邦彦,河野謙治,辻本和仁. 直線形鋼矢板 JFE-FLS の性能検討.
 土木学会第71回年次学術講演会. 2016, p. 1743-1744.
- 5) 三浦啓徳,河野幹夫,山口昭,清水満,渡邊明之,有光武,疲労特性 に優れる JES 形鋼のアンダーパスへの適用. 川崎製鉄技報. 2002, vol. 34, no. 4, p. 188-194.
- 6) ハット形 900 幅鋼矢板の製造技術. JFE 技報. 2010, no. 26, p. 36-67.
- (7) 美坂佳助,吉本友吉. 落下ハンマ法による普通炭素鋼の熱間平均変形 抵抗. 塑性と加工. 1967, vol. 8, no. 79, p. 414-422.

高嶋由紀雄

須﨑健太郎