ラインパイプの安全性評価技術

Safety and Integrity Assessment Technology of Linepipe

伊木聡IGI SatoshiJFE スチールスチール研究所接合・強度研究部主任研究員(副部長)・博士(工学)村岡隆二MURAOKA RyujiJFE スチール西日本製鉄所鋼材商品技術部溶接管室主任部員(課長)正村克身MASAMURA KatsumiJFE スチール鋼管セクター部主幹職(部長)・工学博士

要旨

天然ガスパイプラインが敷設される地域は地震地帯や凍土地帯へ広がっている。このような地域に敷設される ラインパイプでは、ひずみベース設計の適用が進んでいる。従来、ラインパイプの安全性評価において応力ベー ス設計では内圧による破壊を対象としていたが、ひずみベース設計では鋼管が大きく変形した際の座屈やその後 の破壊を対象としている。応力ベース・ひずみベース設計での変形挙動により想定される破壊形態の違い、安全 性を確保するために必要な評価手法について概説するとともに、ひずみベース設計向けに開発した高変形パイプ HIPER[®]の性能についても述べる。

Abstract:

The area where a natural gas pipeline is constructed spreads out to the earthquake or the permafrost area. Application of the Strain-Based Design (SBD) is applying to the pipeline design constructed in such areas. Conventionally, in the safety assessment of a pipeline, although stress-based design assumed brittle or ductile fracture due to internal pressure, SBD deals with the compressive buckling or subsequent large deformation until final rupture. While outlining the integrity assessment technology developed for linepipes adapting to Stress-Based and Strain-Based Designs, the performance of the high-strain linepipe "HIPER[®]" developed for SBD is also described.

1. 緒言

天然ガスは環境負荷の少なく豊富な埋蔵量をもつエネル ギー源として,近年その消費と需要がますます増加する傾 向にある。それにともなって新しいガス田の開発が進んでい るが,天然ガスの採掘地は需要地から離れた地域へと広がっ ており,長距離パイプラインの建設および計画が増加して いる。これらのパイプラインは経済性や現地施工性の観点 から,高圧操業化,高強度化の傾向にある¹⁾。

また,パイプラインの敷設環境が地震発生地域や寒冷地 などの厳しい環境となることが予想される²⁰ことから,パイ プラインの安全性評価が重要となっている。

HIPER[®]は、このような敷設環境において高強度パイプラ インの安全性を従来強度のパイプラインと同等以上に高め ることを目的として開発された変形性能に優れたラインパイ プである^{3~5)}。

本稿では,これまでに天然ガスパイプラインの安全性確 保のために種々の破壊形態ごとに行われてきた研究成果に ついて概略を述べるとともに,新しい敷設環境における安

2011 年 10 月 4 日受付

全性に関する最近の研究動向として,ひずみベース設計を ガスパイプラインに取り入れるための研究の現状および HIPER[®]の変形性能について実管曲げ試験,実管内圧引張 試験による実証試験結果や破壊形態から考える安全性確保 の考え方について示す。

応力ベース設計下での パイプラインの安全性の考え方

従来から、ガスパイプラインの破壊に対する安全性は、 ガス圧力による周方向応力を対象作用応力とし、第3者工 事などにより万一破壊が発生した場合でも、3段階の安全性 管理が行われている。これらは、(1)DWTT (Drop weight tear test) 破面率の規定により脆性破壊による伝播を防止す る、(2)限界応力規定により高速延性破壊発生を防止する、 (3)シャルピーあるいはDWTT吸収エネルギーの規定によ り高速延性破壊伝播を防止するとの考え方に基づいて実管 試験および小型試験による評価が行われる。**表1**に実管試 験およびよく用いられている小型試験方法をまとめる。基本 的には実管を用いた大型構造物試験により破壊防止性能を 確認した上で、実用上は小型試験による個々のラインパイ

表1 応力設計で用いられる小型・実管試験

Failure types	Portion	Small tests	Full-pipe test	
Brittle fracture	Base metal	PN-DWTT	Partial-gas burst test	
	Seam weld	CTOD, Charpy	Hydro static test (At low temperature)	
Running ductile fracture	Base metal	Charpy energy,	Gas burst test	

Table 1 Small and full-pipe tests for stress-based design

PN-DWTT: Press notched-Drop weight tear test CTOD: Crack tip opening displacement SPC-DWTT: Static precracked-DWTT

プの品質管理が行われる。

2.1 脆性破壊によるき裂伝播の防止

1950年代,ガスパイプラインに起きた長距離脆性破壊伝 播事故を機に,ガスパイプラインの破壊防止に関する研究 が開始された。Eiber^{6,7} は破面の脆性 - 延性遷移挙動に着目 して実管とシャルピー衝撃試験片との延性破面率を比較し, シャルピー試験では危険側の評価を与える傾向になるとの 知見を得た。これは試験片と実管との厚さの違いに起因す ると考え,プレスノッチ DWTTを考案した。実管試験結果 を踏まえ延性破面率が 85%以上であればラインパイプに脆 性破壊は生じないと考え,材料仕様として実管と破面遷移 曲線がよく一致したプレスノッチ DWTTによる 85%延性破 面率の基準が提案され,規定されるに至った。**写真1**に実 管試験の一例を示す。

2.2 高速延性破壊の防止

破壊形態を延性破壊とすることによりき裂の長距離伝播 は防止できると考えられたが、1970年代、延性き裂が 300mにおよぶ長距離を高速で伝播する現象が確認された。 これは高速延性破壊と呼ばれるもので、持続するガス圧が 延性き裂の伝播に必要な塑性変形とき裂生成エネルギーを 供給し続けるため、延性き裂が高速(100~500m/s)で伝 播し続ける現象である。Kiefnerら⁸⁰は、切欠付き実管水圧

写真 1 部分ガスバースト試験後の試験体外観 Photo 1 Fracture appearance of partial-gas burst test

破壊試験により,切欠先端から延性き裂の安定成長の後に 高速破壊へ移行すること(ラプチャー)を示し,その限界 応力(ラプチャー限界応力)を評価する (1) 式を提案した。

$$\frac{1\ 000\pi C\nu E/A_{\rm c}}{8c\sigma_0^2} = \ln\left\{\sec\left(\frac{\pi}{2}\cdot\frac{M_t\sigma_h^*}{\sigma_0}\right)\right\} \qquad \dots \dots \dots \dots (1)$$

ここで、 σ_0 はパイプの流動応力、 σ_t *は周方向応力、 M_t は バルジング係数、 C_v は上部棚シャルピーエネルギー、 A_c は シャルピー試験片破面の面積、cは貫通切欠の半長、Eは縦 弾性係数である。

高速延性破壊が長距離伝播する前に材料によって停止さ せるための評価手法の研究が行われてきた。1970年代から **写真2**に一例を示すような実管パイプライン試験体でのガ スバーストが数多く行われ,判別解析評価法や Battelle 法に 代表される2カーブ法が開発された^{9~10}。

川崎製鉄,日本鋼管(現JFE)も参加した(社)日本鉄鋼 協会 高級ラインパイプ共同研究委員会(High Strength Line Pipe Committee)は、Battelle 2カーブ法を発展させて、き 裂進展にともなう伝播速度の変化とき裂停止距離を解析する シミュレーション手法を提案した^{11,12)}。この HLP 2 カーブ法 は、ガス減圧曲線と材料特性曲線を基に、微小時間ごとに起 こるき裂の伝播と圧力の低下を時間積分してき裂の伝播距離 を計算し、き裂先端の圧力が停止圧力になったときに停止す るとした計算手法である。また、HLP 委員会では材料特性 曲線を見直して、(2)、(3)式を提案している。材料の靭性値 としては、切欠先端に延性き裂を導入したプレクラック DWTT による吸収エネルギーを採用しており、シャルピー 吸収エネルギーとの相関式を(4)式で与えている。

$$P_a = 0.382 \cdot \frac{t}{D} \cdot \sigma_{\text{flow}} \cdot \cos^{-1} \left\{ \exp\left(\frac{-3.81 \times 10^7}{\sqrt{D \cdot t}} \times \frac{D_{\text{p}}/A_{\text{p}}}{\sigma_{\text{flow}}^2}\right) \right\}$$

 $\cdots \cdots \cdots (3)$

写真 2 実管ガスバースト試験後の試験体外観 Photo 2 Fracture appearance of full-scale gas burst test

図 1 実管バースト試験とシミュレーション結果の比較 Fig. 1 Comparison of full-scale burst test and simulation results

ここで、 V_c はき裂伝播速度、 σ_{flow} は流動応力(降伏応力と 引張強さの平均値)、 D_p はプレクラック DWTT 吸収エネル ギー、 A_p は DWTT 試験片破面の面積、Pはき裂位置の圧力、 P_a はき裂停止圧力、Dは管径、tは管厚である。

ただし, HLP 2 カーブ法で用いる材料特性曲線は外径 48 インチ (1 219 mm), 管厚 18.4 mm の API X70 ラインパイプ (API:アメリカ石油協会)のガスバースト試験によって得 られたものであり,同等の強度と寸法のパイプラインのき裂 伝播・停止挙動を推定することができるものの,評価する パイプラインが X80 を越える高強度の場合や,外径が異な る場合には予測精度が低下する。そこで,当社では最近の 研究成果¹³⁾を取り入れて, HLP2 カーブ法を基本理論とし た独自のプログラムを開発した。具体的には,材料特性曲 線の定数をパイプラインの寸法による関数とすること,高吸 収エネルギー材での伝播エネルギー分率の採用,き裂伝播 距離計算の初期条件の見直しなどを行っている。

図1は一般社団法人日本ガス協会が実施したバースト試験¹⁴⁾の解析事例であるが、供試されたパイプがX80グレードで比較的小径であるにも関わらず、き裂伝播速度と伝播 停止距離の両方で良い予測を与えている¹⁵⁾。

3 ひずみベース設計 (SBD) 下での 安全性の考え方

3.1 ひずみベース設計でのパイプラインの損傷形態

永久凍土地帯は,連続永久凍土地帯,不連続永久凍土地 帯,散在型永久凍土地帯に分けられる。これらのうち,不 連続永久凍土地帯においては,パイプラインの存在によっ て凍上(Frost heave)や融解沈下(Thaw settlement)が起 こる場合がある。凍上とは凍っていない土壌を通るパイプラ インが周りの土壌を凍らせて浮き上がる現象であり,融解 沈下とは凍った土壌を通るパイプラインが凍土を溶かして 融解ひずみを発生させながら地盤沈下をもたらす現象であ る。これらの現象により、パイプラインは大きな曲げ変形を 受けることが懸念されるが、凍上や融解沈下を完全に防止 することは難しく、パイプラインの建設と操業の経済性をも 考慮し、ひずみベース設計を取り入れるための研究が北米 を中心に行われている^{16~20)}。

地震地帯や永久凍土地帯に敷設されるパイプラインには, 地盤変状による大変形を許容することが要求される。一方, ラインパイプ材の変形特性(伸び,加工硬化能)は高グレー ドになるに従い低下するため,変形特性を確保することは難 しくなる。そのため,ひずみベース設計をガスパイプライン に適用するための研究は,主にX80以上の高グレードパイ プラインを対象に行われている。また,損傷・破壊形態とし ては,圧縮ひずみに対するパイプ母材の局部座屈と,引張 ひずみに対する周溶接部欠陥からの破壊を対象としている。

3.2 大型曲げ試験機による パイプラインの座屈限界評価

JFE スチールでは SBD で使用されるラインパイプの性能 を評価するために大型の曲げ試験機を開発した。図2 に試 験機の概要を示す。試験機は2つのモーメントアーム,アー ムを押す油圧ジャッキ,装置全体を固定するメインフレーム で構成されている。また,曲げ試験時に試験鋼管には水圧 ポンプにより内圧を付与できるよう設計している。試験鋼管 は2つのモーメントアームの間に溶接され,モーメントアー

図2 大型曲げ試験機の概要

Fig. 2 Overview of the large diameter linepipe bending test

Table 2 Test rig specifications

Maximum diameter of test pipe	1 219 mm (48 inches)	
Maximum length of test pipe	8 m	
Maximum bending moment	35 000 kN⋅m	
Maximum load of hydraulic jack	6 000 kN	
Maximum internal pressure	30 MPa	

Туре	YS (MPa)	TS (MPa)	YR (%)	uEL (%)
HIPER®	579	703	82.4	7.9
Conv.	594	673	88.2	5.7
HIPER [®] (GW)	575	709	81.1	7.4

表 3 供試鋼管の引張特性 Table 3 Tensile properties of tested pipes

YS: Yield Stress TS: Tensile strength YR: Yield ratio uEL: Uniform elongation GW: Girth weld

ム端部の移動により鋼管に曲げモーメントを生じさせる。表 2に曲げ試験装置の主な仕様を示す。

外径 48 インチ (1 219 mm),管厚 22 mm の X80 ラインパ イプと周継手を対象に曲げ実験を実施した。試験体長さは 8 000 mm で直径の 6.7 倍に相当する。曲げ試験中は水圧に より内圧を一定に保ち鋼管全体に曲げモーメントを与えた。 内圧の大きさは 12 MPa で規格最小降伏応力 (SMYS) に対 する周方向応力の大きさで計算される設計係数は 60%とし た。供試鋼管は当社の高変形能鋼管 HIPER[®] と一般材であ り,HIPER[®] については周継手でも曲げ試験を行った。供試 鋼管の引張特性を**表 3** に示す。

曲げモーメントは油圧ジャッキ荷重とモーメントアームの 長さより (5) 式で計算した。

ここで、 M_{pipe} は鋼管に作用する曲げモーメント、 F_{jack} は油 圧ジャッキの荷重、 L_{arm} はモーメントアームの長さ、 δ_y は曲 げ変形による試験パイプの変位である。

曲げ試験の曲げモーメントと曲げ角度の関係を図3に示 す。座屈発生は曲げモーメントの最大点と定義した。 HIPER[®]材の座屈発生時の曲げ角度は14.1°,一般材の曲げ 角度は8.2°であった。HIPER[®]周継手の座屈発生時の曲げ 角度は9.3°となり一般材よりも大きな値を示した。

一般材と HIPER[®] 周継手試験体では破壊限界を明らかに するために座屈発生以降も載荷を続け,鋼管の破壊により 水がリークした時点を破壊限界とした。破壊発生時におけ る一般材の曲げ角度は 20°,周継手は 26°であった。

図4にHIPER[®]材と一般材における座屈発生時の圧縮ひ ずみ分布を示す。HIPER[®]材は一般材に比べると座屈部以外 のひずみ量も大きく鋼管全体で変形していることが分かる。 その結果,座屈が発生するまでの曲げ角度は一般材に比べ HIPER[®]材の方が大きくなると考えられる。

曲げ角度は試験体長で変わるため,座屈および破壊まで の変形性能を示す指標として管長手方向の 2D 区間の平均圧 縮および引張ひずみで一般化した。図5 に示すように HIPER[®]材は一般材に比べ大きな変形性能が確認された。ま た,HIPER[®]周継手については母材の座屈限界に比べ 20% 低い値を示すが,一般材より優れた変形性能を示すことが

図4 座屈近傍の長手方向圧縮ひずみ分布

Fig. 4 Longitudinal compressive strain distribution around the buckling portion

Fig. 5 Compressive and tensile strain capacity of tested pipes

明らかになった。また,破壊限界引張ひずみについても HIPER[®]材の高い性能が実証された。

3.3 HIPER[®] 周継手の破壊ひずみ限界

図5に示すように周継手では母材に比べ約20%低い座屈 限界を示した。その原因を調べるべく、曲げ負荷時の変形 の様子を詳細に調査した。変位が δ_x =250 mm, 500 mm, 1000 mm時における管長手方向の圧縮ひずみ分布を図6に 示す。降伏前である δ_x =250 mm, 500 mm ではほぼ一様

(b) Local buckling near the girth weld

な圧縮ひずみ分布となっているが,最大荷重点に近い δ_x =1 000 mm では周期的な圧縮ひずみ分布が見られた。この 後,円周溶接部から 400 mm 離れたところで局部座屈が発 生した。これらの様子から周溶接継手が座屈の発生に関与 していることが推測される。

図7に引張側における管長手方向の引張ひずみ分布を示 す。座屈が発生するまでの変位レベルである δ_x =500 mm, 1000 mm ではオーバーマッチとなっている周溶接部を除い て一様なひずみ分布となっている。座屈発生以降の δ_x =1500 mm, 2000 mm, 2500 mm では座屈が生じた位置 の反対側のみ引張ひずみが大きく増加している。HIPER[®] 周 継手試験体の周溶接部には人工欠陥を設けていたが,**写真** 3に示すように最終的な破壊形態は引張ひずみが大きく増 加した母材での破断であった。一方,写真3に示すように 周溶接部に設けた欠陥も大きく開口しており延性き裂が進 展していることが観察されたが,板厚の約40%で停止し貫 通はしていなかった。

ただし,仮に欠陥が大きくなった場合には母材部からの 破断に先立ち欠陥からの延性き裂が板厚を貫通し破壊へと 至る可能性も考えられる。よって,周溶接を有するパイプラ インの曲げ負荷による破壊形態は,図8に示すような母材 部での引張ひずみが大きくなり母材部破断へと至る場合と 周方向欠陥からの延性き裂が進展し板厚を貫通する2ケー スが考えられ,両方を考慮した安全性評価を行う必要があ ると考えられる。

図7 周溶接部近傍の長手方向引張ひずみ分布

写真 3 周継手試験体の破壊部外観

Photo 3 Fracture appearance of girth welded specimen

3.4 SBD に対するひずみ基準の安全性評価

以上示したようにラインパイプおよび周継手の大型曲げ・ 破壊試験から,最初にパイプの曲げ圧縮側で局部座屈が生 じ,その後,この座屈部をピポットとし引張側の塑性変形が 進展し,破断に至ることが明らかになった。また,周継手に 欠陥を有する場合には図8に示すように欠陥の大きさや負 荷形態により母材で破断する場合と欠陥からの延性き裂の

進展によりリークに至る2ケースが考えられることが明らか となった。これら圧縮側での座屈限界ひずみや引張側での 破断限界ひずみを求めるためには大型曲げ試験が有用であ るが、引張側での破断位置が座屈位置の反対側に限定され るため評価できない場合がある。欠陥からの評価を行うた めには実管引張試験や周継手から切り出した CWP(Curved wide plate)による大型引張試験が有用である。図9に各試 験で得られる限界ひずみを模式的に示す。圧縮側の座屈限 界ひずみは曲げ試験での最大曲げモーメントに対応するパ イプの平均ひずみとして求めることができる。さらに引張変 形を与えると溶接部に設けた欠陥から延性き裂の発生・進 展を生じ,最終的にき裂の板厚貫通(リーク)に至る。継 手の引張限界ひずみは実管引張試験や CWP の平均引張ひ ずみとして求めることができるが、試験中に内圧を付与しな い場合は内圧によるき裂駆動力の増加を考慮し、引張限界 ひずみを補正する必要がある。図9で Safety margin と示し た矢印が局部座屈発生から最終破壊までのポスト座屈域で の破壊安全しろと考えることができる。

4 結言

これまで、国内外において多くの天然ガスパイプラインが 建設され、安全に操業されてきている。今後、高強度化、 超高圧化、過酷環境での建設・操業が進むと予想され、こ れまで以上に安全性・信頼性の向上が必要となる。とくに 地震地帯や凍土地帯におけるパイプラインに対してはひず みベース設計が取り入れられようとしており、座屈に対する 圧縮限界ひずみや引張破壊に対する引張限界ひずみを評価 するための研究,これら限界ひずみを向上させる材料の研 究が積極的に行われている。本稿では,これらに関する実 管試験や解析の現状について概説した。

また,ひずみベース設計の適用されるパイプライン向けに 建設費用の増加を最小限に抑えながら,地震地帯や凍土地 帯における安全性を向上させることを目的に開発した高変 形能パイプ HIPER[®]の曲げ・破壊性能について実験結果を 紹介した。

今後の天然ガスパイプラインの材料開発や建設の一助と なれば幸いである。

参考文献

- Glover, A. et al. Design, Application and Installation of an X100 Pipeline. Proc. of 22nd International Conference on Offshore Mechanics and Arctic Engineering. 2003, OMAE2003-37429.
- Cayz, J. A. et al. Monitoring Pipeline Movement and Its Effect on Pipe Integrity Using Inertial/Caliper In-Line Inspection. Proc. of Rio Pipeline Conference. 2003, IBP573-03.
- Ishikawa, N. et al. Design Concept and Production of High Deformability Linepipe. Proc. 6th International Pipeline Conference. 2006, Paper IPC-10240.
- Okatsu, M. et al. Development of High Strength Linepipe with Excellent Deformability. Proc. 24th International Conference on Offshore Mechanics and Arctic Engineering. 2005, paper no. OMAE2005-67149.
- Suzuki, N. et al. Effect of Strain-hardening Exponent on Inelastic Local Buckling Strength and Mechanical Properties of Linepipes. Proc. of the 20th OMAE. 2001, paper no. OMAE2001/MAT 3104.
- Eiber, R. J. Fracture Propagation. Paper I. Proc. 4th Symp. on Line Pipe Research. 1969, AGA catalogue no. L30075.
- Eiber, R. J. Field Failure Investigations. Paper G, Proc. 5th Symp. on Line Pipe Research. 1974, AGA catalogue no. L30174.
- Kiefner, J. F. et al. Failure Stress Levels of Flaws in Pressurized Cylinders. ASTM STP, 1973, 536, p. 461–481.
- Maxey, W. A. Fracture Initiation, Propagation, and Arrest, Paper J, Proc. 5th Symp. on Line Pipe Research. 1974, AGA catalogue no. L30174, J1–

J31.

- Eiber, B. et al. Fracture Control for the Alliance Pipeline. Proc. Int. Pipeline Conference 2000. IPC2000, 2000, 1, p. 267–277.
- Sugie, E. et al. Notch Ductility Requirements of Line Pipes for Arresting Propagating Shear Fracture. J. Pressure Vessel Technology. 1987, 109, p. 428–434.
- 12) Makino, H. et al. Simulation Method for Crack Propagation and Arrest of Shear Fracture in Natural Gas Transmission Pipelines. Proc. Pipe Dreamer's Conf. 2002, p. 501–523.
- Akiyama, T. Influence of the Pipe Diameter for Running Shear Fracture Propagation of High Pressure Gas Pipeline. Proc. of ASME/JSME PVP Conf. 1998, vol. 371, p. 131–136.
- 14) Kawaguch, S. et al. Full-Scale Burst Tests of Ultra-High Pressured Rich-Gas Pipelines under Buried and Unburied Conditions. Proc. of IPC 2008-64434, 2008.
- Igi S. et al. Running Ductile Fracture Analysis for X80 Pipeline in JGA Burst Tests. Proc. Int. Pipeline Technology Conference. Ostend 2009-068, 2009.
- Mohr, W. Strain-Based Design for Materials with HAZ Softening. Proc. 6th International Pipeline Conference. 2006, IPC06-10424.
- Wang, Y-Y. et al. A Preliminary Strain-Based Design Criterion for Pipeline Girth Welds. Proc. 4th International Pipeline Conference. 2002, IPC 2002-27169.
- 18) Wang, Y-Y. et al.: Strain Based Design of High Strength Pipelines. Proc.

17th International Offshore and Polar Engineering Conference. 2007, ISOPE-2007-SDB-07.

- 19) Denys, R. et al. An Engineering Approach to the Prediction of the Tolerable Defect Size for Strain-Based Design. Proc. 4th Pipeline Technology Conference. Ostend, 2004, p. 163–181.
- 20) Igi, S. et al. Tensile Strain Capacity of X80 Pipeline under Tensile Loading with Internal Pressure. Proc. 8th Int. Pipeline Conference. 2010, IPC 2010-31281.

聡

伊木

隆

正村 克身

村岡