高周波電波吸収特性に優れたソフトフェライト粉

Ferrite Powders for High Frequency Radio Wave Absorber

1. はじめに

電気通信技術の発達と携帯電話,衛星放送,ETC(有料 道路における自動料金支払いシステム),無線LANなどの普 及により,地球上の至るところ目に見えない電波があふれ, 電磁環境対策(EMC)の必要性が増している。Mn-Zn系,Ni-Zn系などのスピネル型フェライトをフェライトタイルとして TVゴーストの改善に寄与した歴史がある¹⁾。デジタル時代に なり,フェライト粉としてさらに高周波のメガへルツ〜低ギ ガヘルツ帯域での電波吸収性能の有効性も認められてきた²³⁾。 JFEケミカルとJFEマグパウダーは,JFEフェライトの協力 で,これらスピネル型フェライト粉を開発,商品化した。 Mn-Zn系,Ni-Zn系でそれぞれ材質,粉体特性の異なる材料 を揃え,さまざまな顧客のニーズに対応している⁴。

2. 製品特性

2.1 Mn-Zn 系フェライト粉

2.1.1 粉体特性

Mn-Zn 系フェライトは高温で焼成して初めてスピネル構造となるため、粉体にするためには強力に粉砕する必要が

あるが、過剰な粉砕では磁気特性が劣化する上に嵩密度が 小さくなる。嵩密度が比較的大きく粉体の取扱いが容易な 10 μ mを中心径とするフェライト粉を商品化した(**表**1)。 空気透過式測定法 (SS -100)による平均粒径は4~5 μ mで あり、レーザー回折式粒度分布測定(日機装(株)製 Microtrac)では50%径D50が10~12 μ mである。粒度分 布を図1に、粒子形状を写真1(1)に示す。

2.1.2 磁気特性

Mn-Zn系の材質は2種類を製品化した。磁気特性を表1 に示す。振動試料型磁力計 (VSM) で測定した粉体粒子の磁 気特性,および焼結コア (リング形状)の磁気特性を示す。 LD-M と LD-MH は,それぞれ一般に電源材,高透磁率材と 呼ばれる材質であり,電源材は高透磁率材に比べ,初透磁 率 (μ) は低いが,キュリー点 (T_c) および飽和磁束密度 (B_m) が高い。この材質特性を反映してフェライト粉の電波吸収 特性としては,特に周波数特性に影響し,低μiの LD-M が LD-MH に比べ高周波特性に優れる。

2.2 Ni-Zn 系フェライト粉

2.2.1 粉体特性

Ni-Zn フェライトは比較的低温焼成でスピネル化するため

Sample name		Mn-Zn Ferrite		Ni-Zn Ferrite 1			Ni-Zn Ferrite 2					
		LD-M	LD-MH	KNI- 106	KNI- 106GSM	KNI- 106GS	KNI- 109	KNI- 109GSM	KNI- 109GS			
Particle size by SS-100	(µm)	4-5	4 – 5	0.6	11	—	0.6	11	—			
Particle size, D50*	(µm)	12	11	0.8	20	90	0.8	21	100			
Bulk density	(g/cm^3)	1.8	1.6	1.0	2.2	2.4	0.9	2.2	2.3			
Saturation magnetization, σ_s by VSM**	(emu/g)	84	66	69	70	71	51	49	49			
Coercive force, <i>H</i> _c by VSM**	(Oe)	11	2.4	31.1	9.8	2.4	18.1	10.0	1.6			
Magnetic characteristics of the bulk materials by R31/19/8 core												
Initial permeability, μ_i at 10 kHz***		2 500	10 000	400 (23°C)		1 700 (23°C)						
Saturation flux density, $B_{\rm m}$ at 30 Oe****	(Gauss)	5 100	4 150	4	4 100 (23°C)	2 700 (23°C))			
Remanence flux density, $B_{\rm r}$ at 30 Oe****	(Gauss)	1 300	760	2	2 500 (23°C) 800 (23°C)							
Coercive force, <i>H</i> _c ****	(Oe)	0.18	0.04	1.0 (23°C)		0.2 (23°C)						
Curie temperature, $T_{\rm c}(^{\circ}{\rm C})$		215	115	180 110								
Electrical resistivity(Ω cm)		400 - 600	10-20	>10 ⁷ (23°C)		>10 ⁷ (23°C)						
Sintered density(g/cm ³)		4.9	5.0	5.15		5.15						

表1 電波吸収体用フェライト粉の粉体および電磁気特性

Table 1	Powder & magnetic	characteristics	of the ferrit	te powder foi	r radio wave	absorber
---------	-------------------	-----------------	---------------	---------------	--------------	----------

*Particle size distribution data by laser diffraction method **Vibrating sample magnetometer

By impedance analyser *By direct current *B-H* curve tracer

²⁰¹⁰年4月9日受付

写真 1 フェライト粉電子顕微鏡 (SEM) 写真 Photo 1 SEM Photograph of each ferrite powder

粒成長が制御しやすく、粒子径の異なる粉体を製造することが可能である。異なる市場の顧客ニーズに対応するため 粒径が1μm,10μm,100μmの3水準に、材質2種類を揃 え、計6種類のNi-Zn系フェライト粉を製品化した(表1)。 粒度分布を図1に、粒子形状を写真1(2)~(4)に示す。

2.2.2 磁気特性

Ni-Zn 系の2材質は Mn-Zn 系と同様,初透磁率 (µi),キュ リー点 (T_c),および飽和磁束密度 (B_m) が主な差異であり (表 1),フェライト粉の電波吸収特性としては,µiの低い KNI-106 系の方が高周波側に優れ,KNI-109 系は低周波向け である。

また,粒径の異なる3種類のフェライト粉の電波吸収特 性を比較すると,一般に粒径が大きいほど低周波の,粒径 が小さいほど高周波で使用される。

2.3 高周波磁気特性と電波吸収性能

2.3.1 高周波磁気特性

Mn-Zn 系フェライト粉 LD-M の複素透磁率と複素誘電率

Fig. 2 LD-M: Frequency dependence of permeability

の周波数特性を**図2**,および**3**に示す。複素透磁率の実部 (µ)は10 MHzを超えると低下し5 GHz 付近で磁性を失う。 一方,損失成分に対応する虚部(µ")は,1 GHz でピークを 持ち10 GHz 近辺まで維持される。また,複素誘電率の実部 (ε')は10 GHz 近辺まで高い値を維持し,損失成分である嘘 部(ε")も10 GHz 付近にピークを持つ。

Ni-Zn 系フェライト粉も透磁率 $\mu' \ge \mu''$ は同様の周波数特性を示すが誘電率の ϵ' は低く, ϵ'' はゼロである。

これらの測定に用いたサンプルは、いずれもフェライト粉 90 wt%,バインダー10 wt%でリングコア(外径 6.9 mm, 内径 3.2 mm,高さ 2.9 mm)を作製してネットワークアナラ イザ(アジレントテクノロジー社製 E8362B)で測定した。

2.3.2 電波吸収性能

高周波での複素透磁率と複素誘電率のデータを用いて, 電波吸収性能を計算できる。解析方法は伝送線路理論に従い,複素透磁率,複素誘電率の周波数特性から,入力イン

Fig. 4 Return loss of ferrite powder "LD-M"

ピーダンスを計算し,電波の反射減衰量 (Return loss) と周 波数,吸収板厚 (Film thickness) の関係を得ることができる⁵⁾。 Mn-Zn 系フェライト粉 LD-M についての計算例を**図 4** に示 す。最も反射減衰量の大きい板厚(整合厚)は 6.7 mm,そ の時の周波数(整合周波数)560 MHz である。厚さを変え ることで 2 GHz 程度まで使用可能である。

3. おわりに

開発粉は,電気電子製品内部の高周波電波ノイズ除去, 高速道路料金所 ETC の電波吸収材,さらに無線 LAN 環境 整備を目的としたビルの内装材などにも使用されている。

また、材質磁気特性や粉体特性を顧客の要望に応じて仕

様を調整することも可能である。

参考文献

- 1) 橋本康雄.「フェライトの電磁波吸収体への応用」. 日本応用磁気学会誌. 1982.
- Sugimoto, S. et.al. "Barium M-Type Ferrite as a Electromagnetic Microwave Absorber in GHz Range." Materials Transactions JIM. 1998, vol. 39, no. 10, p. 1080–1083.
- 3) 花澤理宏ほか. "M型六方フェライトを用いた 40GHz 帯用電波吸収体". 2001 電子情報通信学会ソサイエティ大会. B4-24.
- 4) Kijima, S. et al. ICF10. 2008, p. 237–240.
- 5) 橋本修.「電波吸収体の話」.日刊工業新聞社. 2001.

〈問い合わせ先〉

- JFE ケミカル 無機材料部 TEL:03-5820-6537 FAX:03-5820-6539
 - E-mail : inorganic-products@jfe-chem.com