土壤浄化用鉄粉

Iron Powder for Remediation of Contaminated Soil

尾野友重ONO TomoshigeJFE スチールスチール研究所鉄粉・磁性材料研究部主任研究員(課長)中丸裕樹NAKAMARU HirokiJFE スチールスチール研究所表面処理研究部主任研究員(課長)・Ph. D.加藤嘉英KATO YoshieiJFE テクノリサーチ技術情報事業部調査研究第一部主査(部長)・工博

要旨

揮発性有機化合物(VOC)で汚染された土壌の浄化に適したS含有鉄粉を開発した。製法の異なるS含有鉄粉を作製し、そのVOC分解能と構造の違いを調査した。これらS含有鉄粉は、いずれも純鉄粉に比べ、高いVOC分解性を示した。アトマイズ法で得られたS含有鉄粉は、鉄粉粒子中にSが局在化して析出していた。一方、還元法によって得られた鉄粉では、Sは鉄粉表面に均質に分散しており、0.04 mass%と低いS含有率で高い浄化速度を示した。鉄粉表面の局部電池構造が、VOCの分解を促進していると考えられる。

Abstract:

Sulfur containing iron powder has been developed for a remediation of soil contaminated with volatile organic compounds (VOC). Two types of S containing powders prepared by different methods were investigated. These iron powders showed higher degradation rates of VOC than that of pure iron powder. In S containing powder prepared by an atomizing method, S was deposited locally on an surface of particles. On the other hand, in the powder prepared by a reduction method, S was uniformly dispersed on the surface area of iron particles. And the latter showed high degradation rate even at a low S content as 0.04 mass%. It seems that a local cell structure on the surface of iron particles accelerates the degradation of VOC.

1. はじめに

土壌汚染対策法(平成14年法律第53号)が,2003年2月 15日より施行された。これに先立ち,1990年代から工場跡 地などの有害物質による土壌汚染が社会的問題となってお り,その対策が求められていた。これに対し,総合工事業 者各社,環境関連業者などは,種々の汚染形態に対応した 浄化方法の開発を進めてきた。

土壌汚染は、重金属汚染と揮発性有機化合物(VOC)汚染 に大別される。後者の多くは、機械洗浄などに使われた有 機塩素系化合物で、揮発性が高い反面、比重が水より高い ため、土壌中に浸透すると、地下水層下部に堆積し、長期 間に渡る地下水汚染をもたらす。また、浸透した VOC は、 土壌空間が地下水で満たされない場所においても原液のま ま、もしくは土壌粒子に吸着した形で存在する。

VOC に汚染された土壌および地下水の浄化方法として は、汚染された地下水を揚水し、曝気処理によって、水中 に溶解した VOC を気化させ清浄になった水を再び戻す揚 水曝気法や、土壌中に吸着もしくは滞留する VOC をガス として吸引して浄化する土壌ガス吸引法などが知られてい る。これらに対し,0価の鉄を用いて有機塩素化合物を脱 塩素分解して無害化する方法が開発され,その浄化期間の 短さ,比較的安い処理費用の点で脚光を浴びた^{1,2)}。この方 法では,鉄が酸化される際に放出する電子により,有機塩 素化合物が還元分解され,脱塩化物と塩素イオンが生成す る。

この鉄を用いた VOC の浄化法では,その浄化速度を向 上させる目的で種々の鉄が検討されてきた。初期には,鉄 表面における分解反応であるため,反応表面積を大きくす ると分解速度が速くなることが確認され^{3,4)},その後,鉄表 面に Ni や Pd のような貴金属を析出させ,電極反応を増進 させる方法^{3~5)} などが提唱されてきた。

上記のような方法では、その副原料が高価であり、また、 Niのような重金属は、状況によっては環境汚染物質となる 可能性があるため、適用が特殊な場合に限られていた。今 回、JFEスチールは、これら重金属を用いずに、かつ電極 反応を促進する物質としてSに着目し、Sを含有させた鉄 粉を新規に開発した。

本報では、今回開発した製法の異なる2種類のS析出鉄 粉の性状およびそのVOC分解性能に関して試験した結果 を示す。

2. 実験

2.1 S析出粉の製造方法

2.1.1 水アトマイズ法

電解鉄および FeS を所定量で配合したものを, 20 kg 溶 解炉で溶解後,水圧 15 MPa で水アトマイズし,供試粉を 得た。得られた鉄粉の平均粒径は約 80 μm であった。S 量 を調整して, **Table 1** に示すような試料を作製した。

2.1.2 還元法

ミルスケールおよび鉱石を鉄原とし、コークスを還元剤 として用いた。耐火物容器中にコークスで鉄原をはさむ形 で層状に充填し、大気雰囲気下1130°Cで加熱還元した。 ガス中の CO 濃度を測定し、CO が出なくなった時点で還 元が終了したものと判断した。比較材は、還元剤にコーク スと石灰(CaCO₃)を混合したものを使用して同様の熱処理 を行い、作製した。

Table 2 に作製した鉄粉のSを含む微量成分の分析結果 を示す。

2.1.3 VOC 分解実験

上記のように作製した試料の VOC 分解性能を,以下の2 つの方法で評価した。ここにおいて, VOC 汚染で最も一般 的なトリクロロエチレン(TCE)を浄化の対象物質として用 いた。

(1) 水振蘯実験

VOC を溶解した水と鉄粉を混合し、振蘯して定期的 に残存 VOC 量を測定する水振蘯実験を行った。水振 蘯法では、内容積 120 ml のバイアルびんに鉄粉 5 g を 入れ、これに 50 ml の電解液(CaCO₃:40 mg/l, Na₂SO₃:80 mg/l)を加え、1 000 mg/ml の TCE メタ ノール溶液を 250 μ l 添加し、速やかにテフロンコー ティングしたブチルゴム栓をはめ、さらにアルミシー ルで密封した。各実験条件ごとに、このような試料を 測定数の分用意し、23°C に調整した恒温室内におい

Tal	ble 1	C	ompo	osition	of	atomi	ized	iron	powd	lers
-----	-------	---	------	---------	----	-------	------	------	------	------

				(mass%)
	Si	Mn	S	0
A1	0.07	0.19	0.056	0.41
A2	0.05	0.19	0.100	0.55
A3	0.08	0.20	0.480	0.43
A4	0.06	0.20	0.900	0.52
Reference	0.08	0.20	0.005	0.50

Table 2	Comp	osition	of red	luced	iron	nowd	ers
Table 2	comp	0310011	ULICU	uccu	non	powu	i CI s

				(mass%)
	Si	Mn	S	0
K1	0.03	0.20	0.040	1.06
Reference	0.02	0.21	0.010	1.04

(2) 土壌実験

水振蘯実験と同様に、VOCを溶解した水を含有する 土壌と鉄粉を混合し、定期的に残存 VOC 量を測定す る土壌実験を行った。内容積 120 ml のバイアルびん に、あらかじめ乾燥した砂質土壌(千葉県東金市採取) 40 g と 鉄 粉 1 g を 入 れ、よ く 混 合 し た。これに 1000 mg/lの TCE 水溶液を加え、含水率 10%、土壌 中の TCE 濃度を 100 mg/kg・乾燥土壌となるように調 整した。速やかにテフロンコーティングしたブチルゴ ム栓をはめ、さらにアルミシールで密封した。各実験 条件ごとに、このような試料を測定数の分用意し、 23°C に調整した恒温室内暗所に静置した。所定時間 経過後、1本ずつ抜き取り TCE 濃度を測定した。なお、 比較材として鉄粉を入れない試料も用意し、同様の測 定を行った。

(3) VOC 濃度測定

前述の方法では、水中もしくは土壌中にある TCE 濃度は、その上部空間(ヘッドスペース)中の TCE 濃 度と比例関係にあると仮定し、気層中の TCE 濃度を ガスクロマトグラフで測定し、その値を「VOC 濃度」 とした。使用したガスクロマトグラフは、GC HP5890 (ヒューレット・パッカード社製)で、使用カラムは、 Aquatic 0.32 mm I. D.×60 m×1.4 μm(ジーエルサイ エンス社製)、使用条件は、初期温度 60°C(0.1 min)、 昇温 4°C/min、最終温度 120°C(1.0 min)とした。

得られた測定結果は,所定時間経過後の TCE 濃度を C_t, 初期 TCE 濃度を C_i としたとき,横軸に時間を,縦軸に C_i/C_iを対数表示して示した。この際,結果は,ほぼ直線関 係となるため, TCE 濃度に対して擬一次反応として取り扱 うことができる。この直線の傾きより,見掛けの反応速度 定数を算出した。

3. 結果

3.1 S 含有鉄粉の性状

水アトマイズ法で得られた鉄粉の走査型電子顕微鏡 (SEM)写真を Photo 1 に示す。

これら鉄粉には表面に細かい突起状の構造が見られる。 電子線マイクロアナライザー(EPMA)像により,この突起 部には平坦部にはないSの存在が確認された。還元法で得 られた鉄粉では,水アトマイズ法で得られたような微細構 造は見られない。また,そのEPMA像より,鉄粉表層全体 にSが均一に分散している状態が確認された。

これら,鉄粉の表面構造をさらに細かく分析する目的で,

(a) SEM image of water atomized iron powder

(b) SEM image of reduced iron powder

(c) S dispersing image of water atomized iron powder

(d) S dispersing image of reduced iron powder

10 µm

Photo 1 SEM and EPMA images of S containing iron powders

マイクロオージェ電子分光分析(µ-AES)を行った。

 $10 \,\mu m$

Fig.1に2種類の鉄粉の表層から深さ方向におけるSの 濃度分布を示す。水アトマイズ法で得られた鉄粉では、そ の突起部において表面に高濃度のSが観測された。一方、

(a) Projected part on the surface of water atomized powder particle

(b) Flat part on the surface of water atomized powder particle

Fig.1 Micro-AES depth profiles of S containing iron powders

還元法で得られた鉄粉では、ごく表層にSが観測されたが、 その絶対量はアトマイズ法によるものに比べ少なかった。

このように、S含有鉄粉では、SはFeSとして局在して いることが分かった。また、水アトマイズ法と還元法を比 較すると、後者の方がより細かく分散しているものが得ら れることが分かった。

3.2 S 含有鉄粉の VOC 浄化性能

3.2.1 水振蘯実験結果

水アトマイズ法で作製したS含有鉄粉と純鉄粉による TCE分解能を比較した。Fig. 2 に TCE 残存率の経時変化 を示す。S含有鉄粉の場合は、純鉄粉の場合に比べ、残存 率の低下が速い。また、S含有量が多い鉄粉ほど、その分 解速度は速くなる。Fig. 3 には、擬一次反応として求めた 反応速度定数に及ぼすS濃度の影響を示した。この結果が Sを鉄粉に含有させることにより、VOC の分解能が向上す ることが分かる。しかし、その効果は、S濃度が 0.5 mass% 程度で飽和し、それ以上添加しても、あまり大きな速度上 昇は見られない。

Fig. 2 VOC degradation property of S containing water atomized iron powder

Fig. 4 TCE degradation property of S containing reduced iron powder

Fig. 4には、還元法によって作製したSの分布状態が異 なる鉄粉のTCE分解能を示す。この方法で得られたS含 有鉄粉も、水アトマイズ法で得られた鉄粉と同様、TCEの 分解を促進する。Sを含有しない鉄粉は、ほとんど分解能 はない。また、この方法で得られた鉄粉は、アトマイズ法 で得られた鉄粉に比べ、低S量で優れたTCE分解性を示 している。

3.2.2 土壌実験結果

Fig. 5 に, アトマイズおよび還元法で得られたS含有鉄 粉の土壌中における TCE 分解能を示した。水中同様, S含 有鉄粉は製法に関わらず, 土壌中でも TCE をよく分解す る。一方, Sを含有しない鉄粉では, アトマイズ鉄粉は, TCE をほとんど分解しないのに対し, 還元鉄粉は比較的よ く分解した。

4. 考察

3章で示したように、今回得られたS含有鉄粉のうち、 水アトマイズ法で得られた鉄粉は、明らかにSが局在化し た構造を有す。FeSは、そのものだけでも、VOCの分解性 があることが確認されている⁶⁾。しかし、今回作製した鉄 粉は、それら報告より、さらに速い分解性能を示しており、 FeSもしくは鉄粉のみだけによる分解とは考えにくい。 一方,鉄粉表面に Cu や Ni のような貴金属を析出させ, 局部電池反応を起こさせることで,VOC の分解速度を促進 させる方法が検討され,その効果が確認されている。

今回,水アトマイズ法によって得られた鉄粉においても, 鉄粉上の FeS が局部カソードとして働き,VOC の分解を促 進していると推察される。

一方,還元法で得られた鉄粉では,そのS含有率が 0.04%と低いにもかかわらず,VOC分解能は,アトマイズ 法で得られる0.5 mass%S含有鉄粉と同等の性能を示した。 EPMA 像および µ-AESより,還元鉄粉表層部に局在化する Sは,アトマイズ鉄粉に比べて微細で,その分散状態は, より均一であった。このことより,還元法で得られた鉄粉 では,そのカソード部となるFeSがより微分散化したこと により局部電池形成数が増加し,反応性が高くなったので はないかと推測される。

Sを含有しない鉄粉に関しては、アトマイズ法で得られ た鉄粉と、還元鉄粉とで大きな違いが見られる。前者は、 水中および土壌中でほとんど TCE を分解しないのに対し、 後者は土壌中において、比較的速い分解速度を示す。一般 的に還元鉄粉の方が、アトマイズ鉄粉に比べ比表面積が大 きく、表面反応には有利であると言われている。しかし、 今回、これら鉄粉の比表面積を BET 法で測定すると、アト マイズ鉄粉は、0.472 m²/g、還元鉄粉は 0.199 m²/g と土壌 中における TCE の分解能と逆の傾向を示した。

Fig. 6 に, これら鉄粉の μ-AES の結果を示す。アトマイ ズと還元鉄粉では,表面近傍の酸素の濃度分布が大きく異 なる。表面近傍の酸素の存在は,酸化皮膜の形成を示して いると考えられ,この皮膜の厚さは、アトマイズ粉の方が 還元鉄粉より厚い。酸素皮膜は、TCE と鉄との接触を妨げ ると考えられ、このことが、両鉄粉の土壌中における TCE

Fig. 6 μ -AES depth profiles of S containing iron powders

分解能の違いとなっていると考えられる。

5. おわりに

今回, VOC で汚染された土壌の浄化に適した鉄粉を開発 した。鉄粉による土壌浄化は, 年々その採用件数が増加し ており, 今回開発した鉄粉も今後この用途で使用されるこ とが期待される。また, 鉄粉は, 重金属の浄化にも使用さ れている場合があり⁷⁾, この用途への適用も期待される。 環境浄化への機運は, ますます高まっており, 今後も, 土 壌浄化用鉄粉を糸口に, 社会に貢献できる鉄製品開発を 行っていく。

参考文献

- 先崎哲夫, 熊谷裕男. 還元処理による有機塩素化合物の除去. 工業用水. no. 357, 1988, p. 2.
- 2) 先崎哲夫,熊谷裕男. 還元処理による有機塩素化合物の除去(第2報).
 工業用水. no. 369, 1989, p. 19.
- 3) 先崎哲夫,熊谷裕男,還元処理による有機塩素化合物の除去(第3報). 工業用水. no. 391, 1991, p. 29.
- 4) Johnson, Timothy L.; Scherer, Michelle M.; Trantyek, Paul G. "Kinetics

of halogenated organic compound degradation by iron metal." Environ. Sci. Technol. 30, 1996, 2634.

- 5) Gillham, R. W.; O'Hannesin, S. F.; Odziemkowski, M. S.; Garcia-Delgado, R. A.; Fochi, R. M.; Matulewicz, W. H.; Rhodes, J. E. Enhanced degradation of VOCs. Laboratory and pilot-scale field demonstration, Int. Containment Technol. Conf. 1997. 858.
- 6) Sivavec, Timothy M.; Horney, David P.; Baghel, Sunita S. Reductive dechlorination of chlorinated ethenes by iron metal and iron sulfide minerals. Preprint extended abstract. American Chemical Society Atlanta. GA, 1995. 42.
- 木村利宗.鉄粉法による排水中の重金属などの有害物質の処理. PPM. 1982, 1.

尾野

友重

加藤 嘉英

- 33 -