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Abstract:
JFE Steel Group has developed a diagnostic system 

that determines early abnormalities by processing vibra-
tion waveforms by using statistical methods for journal 
bearings, reciprocation machines and low-speed rotary 
machines. The developed system was applied to the pro-
duction facilities and its marketing started at the same 
time. To date, the companies have succeeded in detect-
ing early abnormalities of journal bearings of induced 
draft fan motors in converters and reciprocation rota-
tion machines such as the loss of the inhalation valves 
and the exhalation valves of plunger pumps.

1. Introduction

The JFE Steel Group positions equipment diagnosis 
technology as a necessary and indispensible technology 
for equipment control, and has been involved in devel-
opment in this field for more than 30 years. The devel-
oped technologies are applied to the steel manufacturing 
equipment and are also marketed outside the JFE Group. 
In particular, JFE began development of vibration diag-
nosis technology for rotary machines from an early date 
and has made continuous improvements in this technol-
ogy1).  This paper introduces diagnosis technologies for 
journal bearings, reciprocation machines, and low-speed 
rotary machines, with which early judgment of abnor-
malities was difficult using conventional techniques.

2. Development of Machine Abnormality 
Diagnosis Technology  
by Highly Accurate Waveform Analysis 

Vibration abnormality judgment is generally a pass/
fail judgment which is made by measuring vibrational 
velocity, acceleration, etc. and comparing the result 
with standard values specifying, in advance, peak, 
root mean square (rms), and other values. With this 
technique, pass/fail judgment technologies have been 
established for roller bearings and other parts of high-
speed rotary machines which operate under constant 
speed and load conditions. However, with journal bear-
ings, reciprocation machines, and low-speed rotary 
machines, abnormality judgments were difficult due to 
deviations in vibration values, the fact that vibration 
values do not display large changes until the terminal 
stage of the abnormality, and similar factors. Therefore, 
the authors developed a diagnosis system in which 
parameters obtained from measured waveforms are 
extracted, new parameters which capture the distinc-
tive features of the waveforms are formed by statistical 
techniques such as principal component analysis, Kull-
back information, etc., trend control is performed using 
the change in the waveform due to equipment abnor-
malities as a parameter, and abnormality judgments are 
made on this basis.
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2.1 Vibration Diagnosis Technology  
by Dimensional-Nondimensional  
Integrated Parameter  
Using Principal Component Analysis 

2.1.1 Extraction of dimensional-nondimensional 
parameter

In this technique, first, as shown in Table 1, 
dimensional parameters (peak, rms, mean value, rota-
tion frequency element value, etc.) and nondimensional 
parameters (wavy rate, peak-to-rms ratio, impact index, 
skewness, Kurtosis, etc.) are extracted2).

2.1.2 Execution of principal component  
analysis 

Principal component analysis is a multivariate 
analysis technique and is used to extract the control-
ling components when it can be thought that multiple 
parameters (factors) control abnormal events (results). 
The results of linear combination of nondimensional-
ized parameters, also including dimensional parameters, 
are called principal components, and are specified so 
as to maximize variance of the principal components 
(Fig. 1). Concretely, the direction of the first principal 
component is determined so as to maximize the variance 
of the measured value X for the data under normal con-
ditions (Group A). Because the linear combinations are 
made in such a way as that deviations increase, if these 

are compared with the measured data, it is possible to 
distinguish an abnormality as a group (Group B) which 
is clearly different when that group diverges from the 
normal group.

2.1.3 Formation of integrated parameter

The principal component Zi (population) obtained 
under a normal condition, as described above, is 
assumed to follow a regular distribution. The statistical 
quantity χ2 comprising N samples taken independently 
from this population follows a chi square distribution 
with N−1 degrees of freedom (from the theorem of chi 
square distribution).

χ2: chi square value
N: number of samples
s2: sample variance
σ2: population variance

Here, if the n samples extracted from the population 
are called X1, X2, Xn, the sample variance s2 is expressed 
by 

Because the population variance σ2 of the principal 
component Zi is equal to the eigenvalue λi, the follow-
ing equation is obtained when Xi and X―i in Eq. (2) are 
replaced with Zi and Z―i, respectively3),

Zi: i-th principal component
Z―i: mean value of i-th principal component Zi

λi: eigenvalue of i-th principal component

The two sides of Eq. (3) are divided by χ2 (φ, α):

φ: degree of freedom of χ2 distribution 
α: significance level

In this technology, this value is defined as the dimen-
sional-nondimensional integrated parameter S.

Figure 2 shows the relation between the significance 
level α and the normal range of the dimensional-

Kind of parameter Parameter 
Dimensional parameter The maximum value, Root mean 

square value, Mean value, Rotation 
frequency element value ×n; ×1/2; ×1/3;
×0.4, Frequency element value of 
bearing defect

Nondimensional parameter Wavy rate, Peak-to-rms ratio, Impact 
index, Skewness, Kurtosis

Table 1　 Example of dimensional parameter and nondimensional 
parameter
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Fig. 1　 At the image of the principal component analysis
(two variables X and Y )
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nondimensional integrated parameter S. Among the 
data taken under a normal condition, the normal range 
is designated by the significance level α. For example, 
when α=0.05, the confidence interval is 95% (range of 
95% of normal data). Because the center of the ellipse is 
S=0 and a point on the ellipse is S=1, the region where 
S≤1 can be considered the region where a normal con-
dition is confirmed. The distance of the measured data 
from the normal data is evaluated using the dimensional-
nondimensional integrated parameter S, and judgments 
of equipment abnormality are made by trend control of 
this S value.

2.2 Vibration Diagnosis Technology 
Using Kullback Information

2.2.1 Extraction of amplitude probability 
density function 

The amplitude probability density function P(x) is 
extracted from the measured vibration waveform.

Figure 3 shows an image of extraction of the ampli-
tude probability density function.

The amplitude probability density function P(x) is 
normalized by the root mean square (rms) value of the 
vibration waveform, the peak of amplitude is divided by 
the number of segments d and the result is considered 
to be the segment width, and the original waveform of 
the density function is obtained by counting the number 

included in each width. In actual abnormality diagnosis, 
as shown in Fig. 4, the amplitude probability density 
functions Pr(t) and Pt(t) are extracted from the standard 
data under a normal condition and the measured data 
when an abnormality is judged, respectively.

2.2.2	 Quantification	of	change	in	probability	
density function 

Next, in order to quantify changes in the ampli-
tude probability density function, the Kullback-Leibler 
divergence of symmetry type (hereinafter, ID value)4) is 
obtained.

Pr(t):  Amplitude probability density function of 
standard data (normal data)

Pt(t):  Amplitude probability density function of 
measured data (abnormal data)

t: time (ms)

The ID value is calculated from the amplitude prob-
ability density function of standard data (normal data), 
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Pr(t) and the amplitude probability density function of 
measured data (abnormal data), Pt(t) obtained in Fig. 4 
using Eq. (5).

Figure 5 is an example of calculation of the ID 
information waveform from the waveform in Fig 4. The 
fact that the difference between the standard data and 
the measured data is expressed by the ID information 
waveform can be confirmed. Furthermore, the ID value 
is the area when the value of the waveform in Fig. 5 is 
integrated.

3. Basic Experiment Evaluation
by Highly Accurate
Vibration Waveform Analysis

An off-line test device was prepared using a mul-
tistage centrifugal pump, as shown in Fig. 6. Vibra-
tion sensors, AE (acoustic emission) sensors, etc. were 
installed on the bearing part, and a burning (seizure) 
detection test of the journal bearing was performed.

The pump used in this experiment was a multistage 
centrifugal pump (motor: 5.5 kW, bearing metal: WJ1, 
bearing lubricant: turbine oil (VG-46)). First, data col-
lection was performed for a given time under a normal 
condition at a speed of 1 460 min‒1. A burning test was 
then performed by draining the oil from the discharge 
hole at the bottom of the bearing casing and applying a 
load by inserting a 0.1 mm shim in the bearing bolted 
joint to cause eccentricity.

Figure 7 shows the relationship between test time 
and the results of measurement of the velocity peak 
value (VEL-P), acceleration peak value (1/5ACC-P), and 
acceleration rms value (ACC-R), and change magnifica-
tion of AE. Beginning 27 min after the start of the test, 
a squeaking metal contact sound due to seizure occurred 
for about 2 min. This is an initial-period phenomenon 
in burning. During this period, it was difficult to judge 
abnormality because the values of the conventional 
parameters such as VEL-P, 1/5ACC-P, ACC-R, AE, etc. 
increased temporarily, but then immediately decreased 
to their original levels. With the developed technology 
using the S value (parameter integrating dimensional and 
nondimensional parameters), the S value rose sharply, 
although with variations, beginning 20 min after the 
start of the test, which was 7 min earlier than the con-

ventional parameters, confirming that early abnormality 
detection is possible using the S value. After 58 min, the 
metal contact sound became continuous and was accom-
panied by a burning smell. Therefore, the pump was 
stopped 68 min after the start of the test, and the experi-
ment was ended. Photo 1 shows the appearance of the 
shaft bearing after the end of the experiment.

4. Verification	with	Actual	Machines

4.1 System Outline

Figure 8 shows a block diagram of the system when
applied to actual equipment. Vibration sensors are 
installed on the bearings and other parts of each unit of 
equipment, and vibration waveform data are collected 
periodically by a prototype high-speed data collection 
device. The data are transmitted to a data collection per-
sonal computer at a cycle of 20 times per minute. The 
data collection personal computer transmits the data to 
the monitoring server, enabling clients (maintenance 
section, production section) to check the data in the 
server.

Water 
tank

(2 000 l )

Control board
(Inverter control)

Journal 
bearing 

Fig. 6 Outline of basic examination evaluation device
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4.2 Main Features

With this system, it is possible to perform high-speed 
sampling at 26–38.4 kHz. Therefore, fabrication of the 
prototype high-speed data collection device, which can 
collect waveforms for a maximum 30 seconds period, 
enabled adequate waveform sampling for parameter 
formation by statistical techniques, even with low-speed 
rotary machines.

4.3 Examples of Application to  
Actual Machines

Next, this section introduces two examples of early 
abnormality detection in an induced draft fan (IDF) 
motor (journal bearing) in converters and a plunger 
pump (reciprocation machine) in a plate mill, where the 
developed technology was used in actual machines. In 
low-speed rotary machines, a defect was also success-
fully detected in an inner ring scratch in a bearing of a 
reduction gear (24 min–1) of a blast furnace raw material 
charging conveyer, etc.

4.3.1 Example of IDF motor in converter

First, an example of an IDF motor in a converter 
will be introduced. Figure 9 is a trend management 
graph of data sampled from a vibration sensor installed 
on the journal bearing of an IDF motor in a converter.

With the conventional technique, the acceleration 
caution value was exceeded on April 6, but thereafter, 
there was no large increase and the trend remained 
around the caution value. Accordingly, recognition of 
the fact that this was an abnormality may have been 
delayed. In contrast, the dimensional-nondimensional 
integration parameter S used in the statistical technique 
rose to 45 times the normal value on April 2 and showed 
large rises thereafter, although with variations.

Therefore, when all parameters were checked in 
order to investigate the cause of the rise in the S value, it 
was judged that acceleration-rotation frequency (ACC-
fr), acceleration-impact index (ACC-IP), etc. increased 

beginning on April 2, and impact vibration of the rota-
tion frequency was occurring (Fig. 10). From the above, 
light metal contact, backlash in the bearing housing, or 
similar trouble was considered possible, and wear of 
the oil ring contact part was also conceivable. An open 
inspection was performed, and misalignment of the half 
contact part of the oil ring was confirmed. After repair, 
the vibration decreased.

4.3.2 Example of plunger pump for 
descaling in plate mill

Next, an example of a plunger pump used in des-
caling in plate mill will be presented. Vibration sensors 
were installed at a total of 12 locations, including 10 
suction and discharge valves (5 each) on the plunger 
pump body and 2 crankshaft bearings, and detection of 
abnormalities in the reciprocal motion of the pump was 
attempted (Fig. 11).

Figure 12 shows the trend management graph and 
acceleration waveform when a suction valve abnormal-
ity was detected. Abnormality judgment was difficult 
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Fig. 8 Block diagram of system of making to real machine
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because the root mean square (rms) value (ACC-R) 
of vibration acceleration in the conventional method 
showed a slight increase, but this was limited to less 
than 2 times the normal value and did not reach the cau-
tion value. In contrast, the Kullback-Leibler divergence 
of symmetry type (ID) information value showed a clear 

rising tendency and exceeded 100 times the normal 
value, although with variations. When the acceleration 
waveform was checked, leak vibration after the valve 
was closed, which could not be observed on January 18, 
was found on February 20. As a result, the valve was 
replaced during scheduled maintenance.

Photo 2 is a photograph of the suction valve after 
removal. Large loss had occurred on the seat face. The 
ACC-R value used in the conventional method rose very 
slightly around February 20. In contrast to this, the ID 
value in the statistical technique began to rise in the first 
part of February, confirming the superiority of the ID 
value.

5. Conclusion

This research confirmed that processing of vibration 
waveforms by statistical techniques such as principal 
component analysis, Kullback information, etc. enables 
dramatically earlier abnormality judgment than conven-
tional techniques in judgment of abnormalities in actual 
machines such as journal bearings, reciprocation materi-
als, low-speed rotary machines, and others which were 
difficult to judge abnormalities using conventional tech-
niques.

JFE Mechanical has begun outside sales of a high 
performance monitoring device called “Condition 
Eye” 5) incorporating this technology and has already 
received inquiries.
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Fig. 12　 Tendency management graph and v ibrat ion 
acceleration wave type when inhalation valve 
abnormality is detected
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Fig. 11　 Vibration sensor installation situation of main body of 
plunger pump of plank factory




