

STEEL PLATES FOR OFFSHORE STRUCTURES

JFE Steel Corporation

JFE **Steel Corp.**

makes the utmost effort to supply high-quality steel plates in response to customer's requirements, and so is continuously improving its production equipment, expanding the product range, and improving quality control.

Plates used for offshore structures under severe conditions require excellent mechanical properties and strictly controlled quality. JFE Steel has developed plate products with high weldability and a wide range of strengths which are suited for various temperature environments, by combining the latest manufacturing processes and chemical design techniques. This document outlines the characteristics of JFE's steel plates and technologies for offshore structures. JFE Steel believes its steel plates have excellent quality to fully satisfy customer's requirements.

CONTENTS

Steel Plate Products Meeting Typical Standards	2
JFE's Standard	3
Examples of JFE's Technologies for Offshore Structures	6
Examples of Mechanical Performance of Typical Products for Offshore Structures	8
Available Sizes	10
Recommendations for Fabricating JFE-HITEN High-strength Steel Plates	12
"Super-OLAC", "EWEL", "HOP" are registered trademarks of JFE Steel Corporation in Japan.	

STEEL PLATES FOR OFFSHORE STRUCTURES

4

1 High quality products and a wide range of types

JFE steel plates are backed by world-leading technologies and decades of experience. In addition to producing plates that meet domestic and overseas industrial standards, JFE Steel produces a wide variety of unique steel plates. These include high-tensile strength steel plates, steel plates for low-temperature service.

3 Excellent dimensional accuracy and uniformity

JFE Steel produces steel plates by computercontrolled plate mills, and the plates have excellent dimensional accuracy and uniformity. JFE Steel's world-leading technology minimizes plate crown and fluctuation of the thickness along the direction of length, to produce the optimum rolled shape.

2 Modern controlled rolling and on-line accelerated cooling technology

JFE Steel uses powerful rolling machines for controlled rolling and highly efficient on-line accelerated cooling facilities. It has also developed the TMCP technology and is the leading company in this field. JFE Steel produces and supplies sophisticated high-strength steel plates that offer high toughness, good weldability and high HAZ toughness under high heat input welding by TMCP technology. These products are now used a broad range of offshore fields. JFE Steel has built up a total control system from order to shipment using powerful computers. Order information from the customer is exactly input to each production process, and so products which precisely meet the requirements can be delivered with minimum lead time.

Optimum delivery control

Steel Plate Products Meeting Typical Standards

Steel Plates with Preproduction Qualification

YS class	Maximum	API	13	N	NORSOK
r 5 class	Thickness (mm)	API	10025	10225	M120
355MPa	101.6	2H Grade 50 2W Grade 50	S355JR S355J0 S355J2 S355K2 S355N S355NL S355M S355M	S355G7 S355G8 S355G9 S355G10	Y04 Y05 Y20 Y25
420MPa	101.6	2W Grade 60	S420N S420NL S420M S420ML	S420G1 S420G2	Y15 Y30 Y35
460MPa	101.6		S460N S460NL S460M S460ML	S460G1 S460G2	Y40 Y45
500MPa	76.2	(Grade 70) *			Y50 Y55

* API 2W Mod Grade

2

Steel Plates of Ship Classification and JFE Standard

YS Class	S	hip classification	JFE Standard
rs class	Hull structural steel	High strength quenched and tempered steel	JFE Standard
315MPa	A32 D32 E32 F32		
355MPa	A36 D36 E36 F36		
390MPa	A40 D40 E40 F40		
420MPa		ABS EQ43 DNV GL E420	
460MPa	A47 ** D47 ** E47 **		
500MPa		ABS EQ51 ABS FQ51 DNV GL E500	JFE-HITEN610
550MPa		ABS EQ56 ABS FQ56 DNV GL E550	
620MPa		ABS EQ63 DNV GL E620	JFE-HITEN710
690MPa		ABS EQ70 ABS FQ70 DNV GL E690 DNV GL F690	JFE-HITEN780M JFE-HITEN780ML

** Approved conditions of A47, D47 and E47 are different according to Classes. Please consult JFE Steel before order placing.

High Tensile Strength Steel Plates

Since 1952 JFE Steel has been researching and developing JFE-HITEN steel plates which have good weldability and high tensile strength up to 980MPa class. These products are widely used in many engineering fields of offshore structures.

Brand	Features
JFE-HITEN 610	Standard high-strength steel plate with yield strength of over 450MPa and superior weldability.
JFE-HITEN 710	Standard high-strength steel plate with yield strength of over 615MPa and superior weldability.
JFE-HITEN 780M	Steel plates containing Ni alloy, showing high toughness, high strength and superior weldability even for a thickness of 150mm.

Steel Plates for Low Temperature Services

Steel plates are widely used for offshore structures operating in cold regions such as frozen sea. Steel plates are also specified by ASTM, ASME, EN and ship class such as NK. JFE Steel supplies steel plates in conformance with these standards, and has developed its own steel plates that have been certified by authorized associations.

Brand	Features
JFE-HITEN780ML	Steel plate containing Ni alloy, offering high toughness, high strength and superior weldability even for a thickness of 210 mm. Typical application is for the legs and cords of jack-up rigs in cold regions.

High Tensile Strength Steel Plates

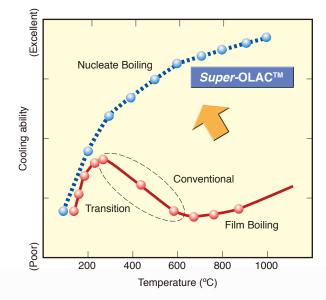
		Chemical Composition (%)															
Designation (Thickness mm)	Thickness						Ceq*	q*									
	(mm)	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Nb	В	Thickness (mm)		Рсм	
JFE-HITEN610 (6~150)		≦0.16	0.15/ 0.55	≦1.50	≦0.025	≦0.015	≦0.30	≦1.00	≦0.30	≦0.30	≦0.08	_	_	t≦50 50 <t≦75 75<t< td=""><td>≦0.45 ≤0.47 ≤0.49</td><td>≦0.26 ≦0.28 ≦0.28</td><td></td></t<></t≦75 	≦0.45 ≤0.47 ≤0.49	≦0.26 ≦0.28 ≦0.28	
JFE-HITEN710 (6~100)		≦0.16	≦0.35	≦1.20	≦0.025	≦0.015	≦0.40	≦1.00	≦0.70	≦0.50	≦0.08	_	≦0.005	t≦50 50 <t< td=""><td>≦0.55 ≦0.59</td><td></td><td></td></t<>	≦0.55 ≦0.59		
JFE-HITEN780M (6~150)	t≦100 100 <t< td=""><td>≦0.14 ≦0.18</td><td></td><td>≦1.20 ≦1.20</td><td>≦0.015 ≦0.015</td><td>1</td><td>1</td><td>0.30/1.50 0.30/1.50</td><td></td><td>≦0.60 ≦0.60</td><td>≦0.05 ≦0.05</td><td>-</td><td>≦0.005 ≦0.005</td><td>50<1>100</td><td>≦0.53 ≦0.57 ≦0.62</td><td>≦0.30 ≦0.32 _</td><td></td></t<>	≦0.14 ≦0.18		≦1.20 ≦1.20	≦0.015 ≦0.015	1	1	0.30/1.50 0.30/1.50		≦0.60 ≦0.60	≦0.05 ≦0.05	-	≦0.005 ≦0.005	50<1>100	≦0.53 ≦0.57 ≦0.62	≦0.30 ≦0.32 _	

* Ceq = C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14

High Tensile Strength Steel Plates for Low Temperature Service.

		Chemical Composition (%)													
Designation (Thickness mm)	с	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Nb	В	Ceq*	Рсм	
JFE- HITEN780ML (6~210)	≦0.16	≦0.35	≦1.20	≦0.020	≦0.010	≦0.50	≦4.00	≦1.00	≦0.60	≦0.10	-	≦0.005	-	Ι	

* Ceq = C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14


4

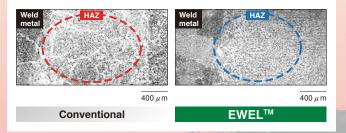
		Tensil	e Test		Bending Te	est (180°)	Impact Test (2mmV Charpy)			
Yield Point or	Proof Stress	Tensile		Elongation		Bending	Bending Radius		Test Temperature	
Thickness (mm)	(MPa)	Strength (MPa)	Thickness (mm)	(%)	Test Specimen (JIS)	Thickness (mm)	(Test Specimen No. 1	Thickness (mm)	(°C)	(J)
t≦75 75 <t< td=""><td>≧490 ≧470</td><td>610/730</td><td>t≦16 16<t≦50 20<t< td=""><td>≧19 ≧27 ≧19</td><td>No. 5 No. 5 No. 4</td><td>_</td><td>1.5t</td><td>12<t≦32 32<t< td=""><td>-10 -15</td><td>≧47 ≧47</td></t<></t≦32 </td></t<></t≦50 </td></t<>	≧490 ≧470	610/730	t≦16 16 <t≦50 20<t< td=""><td>≧19 ≧27 ≧19</td><td>No. 5 No. 5 No. 4</td><td>_</td><td>1.5t</td><td>12<t≦32 32<t< td=""><td>-10 -15</td><td>≧47 ≧47</td></t<></t≦32 </td></t<></t≦50 	≧19 ≧27 ≧19	No. 5 No. 5 No. 4	_	1.5t	12 <t≦32 32<t< td=""><td>-10 -15</td><td>≧47 ≧47</td></t<></t≦32 	-10 -15	≧47 ≧47
t≦75 75 <t< td=""><td>≧620 ≧600</td><td>710/840</td><td>t≦16 16<t≦50 20<t< td=""><td>≧17 ≧25 ≧17</td><td>No. 5 No. 5 No. 4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12<t≦32 32<t≦50 50<t< td=""><td>-15 -20 -30</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 </td></t<></td></t<></t≦50 </td></t<>	≧620 ≧600	710/840	t≦16 16 <t≦50 20<t< td=""><td>≧17 ≧25 ≧17</td><td>No. 5 No. 5 No. 4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12<t≦32 32<t≦50 50<t< td=""><td>-15 -20 -30</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 </td></t<></td></t<></t≦50 	≧17 ≧25 ≧17	No. 5 No. 5 No. 4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12<t≦32 32<t≦50 50<t< td=""><td>-15 -20 -30</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 </td></t<>	1.5t 2.0t	12 <t≦32 32<t≦50 50<t< td=""><td>-15 -20 -30</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 	-15 -20 -30	≧47 ≧47 ≧47
t≦75 75 <t< td=""><td>≧685 ≧665</td><td>780/930</td><td>t≦16 16<t≦50 20<t< td=""><td>≧16 ≧24 ≧16</td><td>No. 5 No. 5 No. 4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12<t≦32 32<t≦50 50<t< td=""><td>-20 -25 -35</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 </td></t<></td></t<></t≦50 </td></t<>	≧685 ≧665	780/930	t≦16 16 <t≦50 20<t< td=""><td>≧16 ≧24 ≧16</td><td>No. 5 No. 5 No. 4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12<t≦32 32<t≦50 50<t< td=""><td>-20 -25 -35</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 </td></t<></td></t<></t≦50 	≧16 ≧24 ≧16	No. 5 No. 5 No. 4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12<t≦32 32<t≦50 50<t< td=""><td>-20 -25 -35</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 </td></t<>	1.5t 2.0t	12 <t≦32 32<t≦50 50<t< td=""><td>-20 -25 -35</td><td>≧47 ≧47 ≧47</td></t<></t≦50 </t≦32 	-20 -25 -35	≧47 ≧47 ≧47

		Tensil	e Test			Bending Te	st (180°)	Impact Test (2mmV Charpy)		
Yield Point or	Proof Stress	Tensile		Elongation		Bending	Radius	Test	Absorbed Energy	
Thickness (mm)	(MPa)	Strength (MPa)	Thickness (mm)	(%)		Thickness (mm) (Test Specimen No. 1		Temperature (°C)	(J)	
-	≧665	780/930 760/910	t≦16 16 <t≦50 20<t< th=""><th>≧16 ≧24 ≧16</th><th>No. 5 No. 5 No. 4</th><th>t≦32 32<t< th=""><th>1.5t 2.0t</th><th>(12 —60</th><th>2<t) ≧34</t) </th></t<></th></t<></t≦50 	≧16 ≧24 ≧16	No. 5 No. 5 No. 4	t≦32 32 <t< th=""><th>1.5t 2.0t</th><th>(12 —60</th><th>2<t) ≧34</t) </th></t<>	1.5t 2.0t	(12 —60	2 <t) ≧34</t) 	

Examples of JFE's Technologies for Offshore Structures

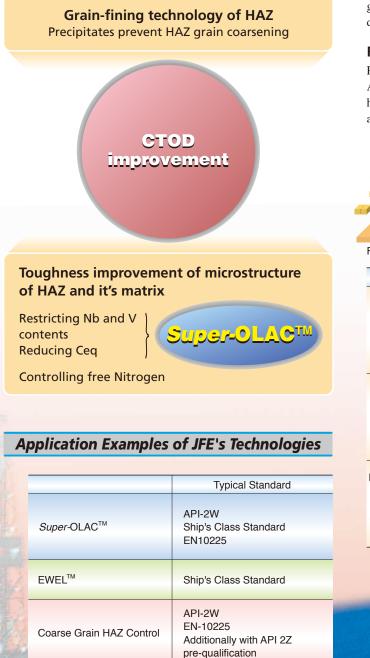
JFE's leading TMCP technology

Super-OLAC[™] is a leading-edge TMCP technology and offers a higher cooling rate than conventiona cooling systems. Good reduction of carbon equivalent offers high weldability and improves the reliability of structures.


TMCP is also effective for thick plates.

JFE-EWEL[™]

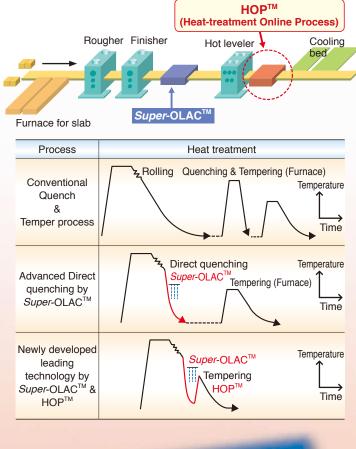
Excellent HAZ toughness under high heat input welding.


EWELTM is composed of three independent technologies based on *Super*-OLACTM. One of them produces finer austenite grains at the peak temperature of welding, one changes the brittle coarse bainite structure to fine ferrite and bainite structure, and the third improves the toughness of the HAZ matrix by reducing free nitrogen through chemical reaction during the welding thermal cycle.

Each technology, or combination with other technologies, is used according to the customer's requirement.

Coarse Grain HAZ Control

CTOD improvement by making grains finer and improving the microstructure.


Other standards can be met if required. Please consult with JFE Steel.

HOP[™] Heat-treatment On-line process

The newly developed HOPTM uses an induction heating method in which an induced current is passed through the steel plate by electromagnetic coils and heating is performed by the heat generated, achieving heating with an extremely large energy density.

Features of HOP[™]

Realizes 100% on-line heat treatment synchronized with rolling. A complete on-line system including rolling – accelerated cooling – heat treatment makes it possible to meet extremely short deadlines and realize mass production.

7

Examples of Mechanical Performance of Typical Products for offshore Structures

(%)

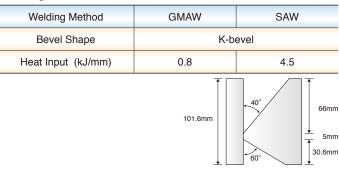
API2W Gr.50 t=101.6mm

Base Plate

Chemical composition

С	Si	Mn	Р	S	others
0.07	0.19	1.47	0.005	0.0004	Cu, Ni, etc.

Mechanical properties


		Ter	nsile test	l		Charpy V-notch impact test				
Loca	tion	Y.S.	T.S. (MPa)	EL (%)	RA (%)	Abso	Absorbed Energy (J)			
& Dir	ec.	(MPa)				vE-40	vE-60	vE-80	FATT	
	L	411 419	507 507	39 37	_	389	341	319	-85℃	
1/4t	т	414 406	516 513	38 38	_	394	349	284	-85℃	
	z	407	507	-	81	_	-	_	_	

Strain Aged CVN Test

Location	Strain Aging	Direction	Absorbed Energy (J) vE-40	50% FATT
Cubourfooo	As rolled	т	269	-67°C
Subsurface	5% Strain 250°C × 1h	т	205	-50°C

Weldability

Welding Conditions

Tensile Test of Welded Joint

Heat	Test	١	Weld Metal	Welded Joint			
Input	Temp.	Y.S.	T.S.	EL	T.S. Fractur		
(kJ/mm)		(MPa)	(MPa)	(%)	(MPa)	Position	
0.8	B.T.	633	633	26	552	B.M.	
0.0	11.1.	000	000	20	553	B.M.	
4.5	DT	100			544	B.M.	
4.5 R.T.		488	557	33	540	B.M.	

Charpy V-notch Impact Test of Welded Joint

Heat Input (kJ/mm)	Location	Notch Position	Absorbed Energy (J) -40°C
0.8	1/4t	W.M. CGHAZ SCHAZ	161 337 257
0.8	Root	CGHAZ SCHAZ	153 273
4.5	1/4t	W.M. CGHAZ SCHAZ	134 228 347
4.5	Root	CGHAZ SCHAZ	249 266

CTOD Test of Welded Joint

Test Temp.	Heat Input (kJ/mm)	Notch Position	CTOD Value (mm)
	0.8	CGHAZ	1.49 1.37 2.27 1.80 1.88 2.15 1.69 1.49
		SCHAZ	0.63 0.61 0.69
-10°C		W.M.	0.99 0.81 0.90
		CGHAZ	1.03 2.75 1.16 2.39 ≧ 2.81
	4.5	SCHAZ	0.86 1.94 1.58
		W.M.	≧ 2.88 1.90 ≧ 2.84

API2W Gr.60 t=101.6mm

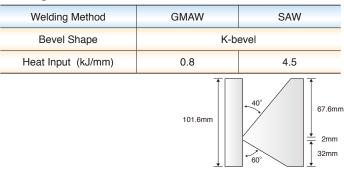
Base Plate

Chemical composition

С	Si	Mn	Р	S	others
0.085	0.14	1.57	0.005	0.001	Cu, Ni, etc.

Mechanical properties

		Ter	nsile Test			Charpy V-notch Impact Test				
Loca	tion	Y.S.	T.S.	EL	RA		d Energy J)	50%		
& Dir	ec.	(MPa)	(MPa)	(%)	(%)	vE-40	vE-60	FATT		
	L	449 426	556 549	32 33	_	446	441	-100°C		
1/4t	т	446 444	560 559	31 32	_	450	449	-90°C		
	z	434	551	_	80	_	_	_		


Strain Aged CVN Test

Location	Strain Aging	Direction	Absorbed Energy (J) vE-40	50% FATT
Outrautasa	As rolled	т	397	<-100℃
Subsurface	5% Strain 250℃ × 1h	т	137	

Weldability

(%)

Welding Conditions

Tensile Test of Welded Joint

Heat	Test	١	Neld Metal		Welde	d Joint
Input	Temp.	Y.P.	T.S.	EL	T.S.	Fracture
(kJ/mm)		(MPa)	(MPa)	(%)	(MPa)	Position
0.8	R.T.	554	576	29	593	B.M.
	-10℃	597	604	30	—	_
4.5	R.T.	517	601	32	596	B.M.
	-10℃	535	620	31	—	_

Charpy V-notch Impact Test of Welded Joint

Heat Input	Location	Notch Position	Absorbed Energy (J)
(kJ/mm)			-40°C
		W.M.	156
	1/4t	CGHAZ SCHAZ	478 274
0.8		CGHAZ	395
	Root	SCHAZ	205
		W.M.	252
	1/4t	CGHAZ SCHAZ	451 399
4.5	Root	CGHAZ SCHAZ	312 235

CTOD Test of Welded Joint

Test Temp.	Heat Input (kJ/mm)	Notch Position	CTOD Value (mm)
	0.8	CGHAZ	1.05 1.00 0.97 1.05 0.98 0.77 0.77 1.00
		SCHAZ	1.57 2.17 1.97
-10°C		W.M.	1.45 1.15
		CGHAZ	1.14 0.47 0.41 1.52 1.58
	4.5	SCHAZ	0.93 0.67 1.03 1.09
		W.M.	1.83 1.74

Without Heat Treatment

																				Prod	uct Ler	ngth: m
Width (mm)	1000	1401	1601	1801	2001	2201	2401	2601	2801	3001	3201	3401	3601	3801	4001	4201	4401	4601	4801	5001	5201	5301
Thickness (mm)	~ 1400	~ 1600	~ 1800	~ 2000	~ 2200	~ 2400	~ 2600	~ 2800	~ 3000	~ 3200	~ 3400	~ 3600	~ 3800	~ 4000	~ 4200	~ 4400	~ 4600	~ 4800	~ 5000	~ 5200	~ 5300	~ 5350
6.0~6.9															<u> </u>		22	22	19	16	13.5	13.5
7.0~9.0																		22	20	16	13.5	13.5
9.1~11.9																			20	20	20	16
12.0~13.9																					22	16
14.0~25.0																						16
25.1~28.0							25															16
28.1~32.0																			24	23	20	16
32.1~38.0															24	23	22	21	20	19	18	16
38.1~45.0												24	23	23	20	19	19	18	17	16	16	16
45.1~50.0										23	22	21	20	20	18	17	16	16	15	14	14	14
50.1~55.0							24	24	21	21	20	19	18	18	16	16	15	14	14	13	13	13
55.1~60.0							24	22	21	19	19	17	16	16	15	14	13	13	12	12	12	11
60.1~65.0					24	23	21	20	18	18	17	16	15	15	14	13	12	12	11	11	10	9.5
65.1~70.0				24	24	22	21	19	18	17	16	15	14	14	13	12	12	11	11	10	10	9.5
70.1~75.0	24	23	24	23	21	20	18	17	15	15	15	14	13	13	12	11	11	10	10	9.2	9	8.5
75.1~80.0	23	23	22	21	21	19	18	17	15	14	14	13	12	12	11	11	10	10	9.6	9.2	9	8.5
80.1~90.0	20	20	20	19	19	17	16	15	14	13	12	11	11	10	10	9.7	9.2	8.8	8.5	8.2	8	7.5
90.1~100.0	18	18	18	17	17	15	14	13	12	11	11	10	10	9.6	9.1	8.7	8.3	8	7.6	7.3		
100.1~110.0	16	16	16	16	15	14	13	12	11	10	10	9.7	9.1	9	8.3	8	7.6	7.2	7	6.7 5.8		
110.1~120.0	15	15	15	14	14	13	12	11	10	10	9.4	8.8	8.4	8	7.6	7.2	6.9 6.0	6.6 5.8	6	6		
120.1~130.0	14	14	14	13	13	12	11	10	9.8	9.2	8.6	8.2	7.7	7.3	7.0	6.7 5.8	6	6	5.1	5.3		
130.1~140.0	13	13	13	12	12	11	10	9.7	9	8.5	8	7.5	7.1	7	6	6	5.1	5.1	5.1	5.3		
140.1~150.0	12	12	12	11	11	10	9.7	9.1	8.4	7.9	7.4	7	6.7 5.8	6	6	5	5	5			J	
150.1~160.0	11	11	11	10	10	9.9	9.1	8.5	7.9	7.4	7.0	6.6 5.7	6	6	5	5			J			
160.1~170.0	10	10	10	10	10	9.3	8.6	8	7.4	6.7 6.0	6.6	6	5.1	5	5	4.4						
170.1~180.0	10	10	10	9	9.4	8.8	8.1	7.6	7.1	6.6 5.8	60	5.1	5	5	4.4				Not a	vailabl	e	
180.1~190.0	9	9	9	9	8.9	8.3	7.7	7.1	6.7 5.8	- A	5.1	4.8	4.5	4.3		,						
190.1~200.0	9	8.2	8.2	8	8.5	7.9	7.3	6.8 5.9		5.1	4.8	4.6	4.3	4.1								

1. In case of the diagonal-lined column $\boxed{A = B}$, "A" shows the maximum product length. And the product length between "B" and 6.1m can not be provided.

2. The minimum product size is as follows: 1m wide and 3m long.

3. Please consult with JFE prior to ordering the product width between 5,201 and 5,350mm.

4. 30m length for limited thickness and width is available. Please consult with us.

Heat Treated

Product Length: m

 $\mathbf{1}$

																			Prod	uct Ler	ngth: m
Width (mm)	1000 ~	1601 ~	1801 ~	2001 ~	2201 ~	2401 ~	2601 ~	2801 ~	3001 ~	3201 ~	3401 ~	3601 ~	3801 ~	4001 ~	4201 ~	4401 ~	4601 ~	4801 ~	5001 ~	5201 ~	5301 ~
Thickness (mm)	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200	4400	4600	4800	5000	5200	5300	5350
6.0~6.9										22	20	15	13		1		1	1			
7.0~7.9											24	22	20	15]			Ν	lot ava	ilable	
8.0~8.9												1	22	18	16	13	11]			
9.0~9.9															22	20	16	12			
10.0~11.9																		22	20	18	
12.0~13.9																				22	
14.0~26.0										25											
26.1~28.0																					
28.1~30.0																		24	24	22	ge
30.1~35.0														24	24	23	22	21	21	20	Negotiable range
35.1~40.0												24	23	22	21	20	19	18	18	17	tiable
40.1~45.0											23	22	20	19	19	18	17	16	16	15	Nego
45.1~50.0									23	22	20	19	18	17	17	16	15	15	14	14	
50.1~60.0					24	24	22	20	19	18	17	16	15	14	14	13	13	12	11	11	
60.1~70.0		23	20	24	22	20	19	17	16	15	14	14	13	12	12	11	11	10	10	10	
70.1~80.0	22	20	18	21	19	18	16	15	14	13	13	12	11	11	10	10	9.7	9.3	8.9	8.7	
80.1~90.0	20	18	16	19	17	16	14	13	13	12	11	10	10	9.8	9.4	8.9	8.5	8.3	7.9		
90.1~100.0	18	16	14	17	15	14	13	12	11	10	10	9.8	9.3	8.8	8.4	8.0	7.7	7.3	7.0		
100.1~110.0	16	14	13	15	14	13	12	11	10	9.9	9.4	8.8	8.4	8.0	7.6	7.3	6.9 6.0	6.6 5.7	6.4 5.5		
110.1~120.0	15	13	12	14	13	11	11	10	9.7	9.1	8.5	8.1	7.7	7.3	6.9 6.0	6.6 5.7	6.3 5.8	5.2			
120.1~130.0	13	12	11	13	11	11	10	9.5	8.9	8.3	7.9	7.3	7.0	6.7	6.4 5.5	5.2	5.0				
130.1~140.0	11	10	9.7	11	10	9.7	9.4	8.7	8.2	7.7	7.2	6.8	6.5 5.6	5.3	4.8						
140.1~150.0	10	10	9.6	10	9.7	9.4	8.7	8.1	7.6	7.1	6.7	6.4 5.5	5.2	4.9							
150.1~160.0	9.7	9.7	9.0	9.7	9.6	8.8	8.2	7.6	7.1	6.7 5.7	6.3 5.3	5.1	4.8								
160.1~170.0	9.4	9.4	8.4	9.7	9.0	8.3	7.7	7.1	6.7 5.7	6.3 5.4	5.1					Not a	vailabl	e			
170.1~180.0	8.9	8.9	7.9	9.1	8.5	7.8	7.3	6.8	6.3 5.5	5.9											
180.1~190.0	8.4	8.4	7.5	8.6	8.0	7.4	0.0	6.3 5.5	5.1												
190.1~200.0	7.9	7.9	7.1	8.2	7.6	7.0	6.5 5.6	5.2	4.8												
										e				-	-						

1. In case of the diagonal-lined column A "B", "A" shows the maximum product length. And the product length between "B" and 6.1m can not be provided.

2. The minimum product size is as follows: 1m wide and 3m long.

3. Please consult with JFE prior to ordering the product width between 5,201 and 5,350mm.

4. 30m length for limited thickness and width is available. Please consult with us.

Recommendations for fabricating IFE-HITEN, high- strength steel plates

General

The precautions on forming or welding of high strength steel are the most important in fabrication of offshore structures.

The JFE-HITEN series, despite their high strength, offers outstanding workability.

In fabricating JFE-HITEN steel plates, however, it is recommended that the manufacturing process be taken into full consideration in order not to impair mechanical properties.

2 Marking

With plates that will be subjected to bending, chisel or punch marks on the outer surface to be bent should be avoided because they can induce cracking.

Cutting and Drilling

Holes should not be punched. Drilling is more suitable. JFE-HITEN steels can be gas-cut as easily as mild steel. Gas cutting produces a hardened layer up to 2 mm in depth. When bending plates, particularly those of 690MPa or higher tensile-strength steels, removal of the hardened layer by grinder or other methods is recommended to be conducted. Gas-cut edges that are to be welded do not require this removal of the hardened layer, since it is removed by the weld penetration.

Cold Working

Because of their high strength, JFE- HITEN steel plates require a larger bending force than mild steel, but their high ductility makes them easy to cold work.

High-strength steel plates exhibit a greater spring back than mild steel, so attention is necessary during the working process. It is desirable to bend these plates parallel to direction of rolling, with a bend radius at least three times that of the plate thickness.

When plates must be bent to a smaller radius, edges should be rounded by grinding as the crack susceptibility of a plate edge increases as bend radius decreases.

5 Hot Forming and Warm Forming

Working quenched and tempered plates at a temperature over the tempering temperature is not recommendable.

Excessive temperature causes deterioration in the properties of the steel. Hot working can also change the properties of contro1rolled and TMCP plates, so the customer is requested to consult JFE about specific working conditions.

6 Post Weld Heat Treatment (PWHT)

JFE-HITEN steel plates exhibit outstanding welded-joint toughness in the as-welded condition, so they do not require postweld heat treatment to recover toughness. Quenched and tempered plates may be post-weld heat treated, if necessary, at temperatures not exceeding the tempering temperature.

For TMCP plates, please consult JFE Steel in advance.

7 Welding

JFE-HITEN steel plates are welded by such conventional methods as shielded metal arc welding, submerged arc welding, gas metal arc welding, and electro-gas arc welding.

Welding by any of these methods produces satisfactory weldments.

1) Welding materials

For the welding of quenched and tempered high strength steels, it is necessary to use Materials which provide superior toughness of weld metal. Low hydrogen type for SMAW and high basicity flux for automatic welding are recommended, in order to prevent the occurrence of various possible weld defects associated with the combination of steel plates and welding materials. Typical welding materials are shown below.

2) Re-Baking Before Use

Low hydrogen type welding rods for shielded metal arc welding must be dried for about 1 hour at temperatures between 350°C and 400°C before use. Fluxes for submerged arc welding must also be fully dried for about 1 hour at $250 \sim 350$ °C.

3) Edge Preparation

Edge preparation can be performed by gas cutting. When an intricate groove configuration is involved, or when high precision is required, edge preparation is performed by machining.

4) Preheating Treatment

In order to determine the preheating temperature, variables including welding materials, plate thickness, welding method, environmental conditions, constraint conditions must be taken into consideration.

TS590MPa class JFE-HITEN can be butt welded without preheating, however, preheating is recommended depending on the above conditions. Preheating temperatures between 50 and 100°C are sufficient.

2

With 690MPa or higher tensile strength steel plates, a higher preheating temperature between 100 and 200°C is required to prevent cold cracking, though the specific temperature varies based on the above conditions. Please consult with JFE.

5) Tack Welding

Tack welding conditions are the same as those for normal welding, however, it is recommended that welding beads be over 50mm in length. It is absolutely essential that arc striking be performed in the bevel or on other steel plate, and not on the base metal.

6) Welding

- ① In case of welding by covered electrodes, it is recommended at the outset that a back start be done for about 30mm in the groove, giving straight beading.
- ② It is recommended that arc length be as short as possible.
- (3) Weaving will impair heat input required for welding. If weaving is applied, the width of weaving must be less than 1.5 times rod diameter.

Recommended welding materials

④ In case of SMAW for TS690MPa and over grades, temper bead methods are recommendable, as shown below.

- (5) Slag removal is not easy for low hydrogen type electrodes, particularly compared to ilmenite or cellulose types, but it is recommended by all means. Pre-heating helps to remove weld slag preferably.
- (6) In case of submerged-arc welding, phenomena such as embrittlement and softening at heat affected zone must be considered.

Care must therefore be taken concerning the welding heat input.

O Besides preheating, the control of interlayer temperature is recommended.

Welding	Shielding gas or polarity	Welding consumables ※	AWS Classification	Minimum applicable YS	Applicable t	emp(℃)*
		KOBELCO brand name		(MPa, as welded)	vE	CTOD
GMAW(Solid)	80%Ar-20%CO ₂	MG-S88A	A5.28 ER120S-G	690	-60	-
GMAW(FCW)	80%Ar-20%CO ₂	DW-A55L <u>DW-A55LSR</u> DW-A62L MX-A62L MX-A62L MX-A80L	A5.29 E81T1-K2M A5.29 E81T1-Ni1M A5.29 E91T1-GM A5.28 E90C-G A5.28 E110C-G H4	460 420 500 500 690	-60 -60 -60 -60 -60	-20 -20 -40** -10 —
	CO ₂	DW-55LSR	A5.29 E81T1-K2C	420	-60	-10
	DCEP/AC	LB-52NS NB-1SJ LB-62L	A5.5 E7016-G A5.5 E8016-G A5.5 E8016-C1	400 420 500	-60 -60 -60	-30 -40 -10
SMAW	DCEP	<u>LB-67L</u> LB-67LJ	A5.5 E9016-G A5.5 E9016-G	500 500	-60 -60	-20 -40**
	AC	LB-88LT	A5.5 E11016-G	690	-60	-
		PF-H55AS/US-36J	A5.17 F7A8-EH14 F7P8-EH14	400	-60	-20
	DCEP	PF-H58AS/US-36J	A5.17 F7A8-EH14 F7P8-EH14	420	-60	-20
		PF-H62AS/US-2N	A5.23 F9A8-EG-Ni2 F9P8-EG-Ni2	500	-60	-20
SAW		PF-H80AS/US-80LT	A5.23 F11A10-EG-G	690	-60	_
0,00		PF-H55LT/US-36	A5.17 F7A8-EH14 F7P8-EH14	400	-60	-50
		PF-H55LT/US-36J	A5.23 F8A8-EG-G	420	-60	-20
	AC	PF-H55S/US-2N	A5.23 F9A10-EG-Ni2 F9P8-EG-Ni2	500	-60	-20
		PF-H78AC/US-2N PF-H80AK/US-80LT	A5.23 F10A8-EG-Ni2 A5.23 F12A10-EG-G	550 690	-60 -60	-10 —

Welding consumables with underline are available for PWHT.

After PWHT, applicable YS may change. Please contact the welding

consumable manufacturer about minimum applicable YS class after PWHT.

JFE Steel Corporation

HEAD OFFICE

Hibiya Kokusai Building, 2-3 Uchisaiwaicho 2-chome, Chiyodaku, Tokyo 100-0011, Japan

■ ASIA PACIFIC

SEOUL

JFE Steel Korea Corporation 16th Floor, 41, Cheonggyecheon-ro, Jongno-gu, Seoul, 03188 Korea

(Youngpung Building, Seorin-dong) Phone: (82)2-399-6337 Fax: (Fax: (82)2-399-6347

SHANGHAI

JFE Consulting (Shanghai) Co., Ltd. Room 801, Building A, Far East International Plaza, 319 Xianxia Road, Shanghai 200051, P.R.China Phone: (86)21-6235-1345 Fax: (86)21-6235-1346

BEIJING

JFE Consulting (Shanghai) Co., Ltd. Beijing Branch 821 Beijing Fortune Building No.5 Dongsanhuan North Road, Chaoyang District, Beijing, 100004, P.R.China Phone: (86)10-6590-9051

GUANGZHOU

GUANGZHOU JFE Consulting (Guangzhou) Co., Ltd. Room 3901 Citic Plaza, 233 Tian He North Road, Guangzhou, 510613, P.R.China Phone: (86)20-3891-2467 Fax: (86)20-3891-2469

MANILA

JFE Steel Corporation, Manila Office 23rd Floor 6788 Ayala Avenue, Oledan Square, Makati City, Metro Manila, Philippines Phone: (63)2-8886-7432 Fax: (63)2-8886-7315

HO CHI MINH CITY

JFE Steel Vietnam Co., Ltd. Unit 1704, 17th Floor, MPlaza, 39 Le Duan Street, Dist 1, HCMC, Vietnam Phone: (84)28-3825-8576 Fax: (84)28-3825-8562

HANOI

JFE Steel Vietnam Co., Ltd., Hanoi Branch Unit 2314, 23rd Floor-West, Lotte Center Hanoi, 54 Lieu Giai Street, Cong Vi Ward, Ba Dinh District, Hanoi, Vietnam Phone: (84)24-3855-2266 Fax: (84)24-3533-1166

BANGKOK

JFE Steel (Thailand) Ltd. 22nd Floor, Abdulrahim Place 990, Rama IV Road, Silom, Bangrak, Bangkok 10500, Thailand Phone: (66)2-636-1886 Fax: (66)2-6 Fax: (66)2-636-1891

YANGON

JFE Steel (Thailand) Ltd., Yangon Office Unit 05-01, Union Business Center, Nat Mauk Road, Bocho Quarter, Bahan Tsp, Yangon, 11201, Myanmar Phone: (95)1-860-3352

SINGAPORE

JFE Steel Asia Pte. Ltd. 16 Raffles Quay, No.15-03, Hong Leong Building, 048581, Singapore Phone: (65)6220-1174 Fax: (65)6224-8357

JAKARTA

PT. JFE STEEL INDONESIA 6th Floor Summitmas II, JL Jendral Sudirman Kav. 61-62, Jakarta 12190, Indonesia Phone: (62)21-522-6405 Fax: (62)21-522-6408

NEW DELHI

JFE Steel India Private Limited 806, 8th Floor, Tower-B, Unitech Signature Towers, South City-I, NH-8, Gurgaon-122001, Haryana, India Phone: (91)124-426-4981 Fax: (91)124-426-4982

MUMBAI

JFE Steel India Private Limited, Mumbai Office 603-604, A Wing, 215 Atrium Building, Andheri-Kurla Road, Andheri (East), Mumbai-400093, Maharashtra, India

Phone: (91)22-3076-2760 Fax: (91)22-3076-2764

BRISBANE

JFE Steel Australia Resources Ptv Ltd Level28, 12 Creek Street, Brisbane QLD 4000 , Australia Phone: (61)7-3229-3855 Fax: (61)7-3229-4377 https://www.jfe-steel.co.jp/en/

Phone: (81)3-3597-3111 Fax: (81)3-3597-4860

■ MIDDLE EAST

DUBAI

JFE Steel Corporation, Dubai Office P.O.Box 261791 LOB19-1208, Jebel Ali Free Zone Dubai, U.A.E. Phone: (971)4-884-1833 Fax: (971)4-884-1472

■ NORTH, CENTRAL and SOUTH AMERICA

HOUSTON

JFE Steel America, Inc. 750 Town & Country Blvd., Suite 705, Houston, TX 77024, U.S.A. Phone: (1)713-532-0052 Fax: (1)713-532-0062

MEXICO CITY

JFE Steel de Mexico S.A. de C.V. Ruben Dario #281-1002, Col. Bosque de Chapultepec, C.P. 11580, CDMX. D.F. Mexico Phone: (52)55-5985-0097

RIO DE JANEIRO

JFE Steel do Brasil LTDA Praia de Botafogo, 228 Setor B, Salas 508 & 509, Botafogo, CEP 22250-040, Rio de Janeiro-RJ, Brazil Phone: (55)21-2553-1132 Fax: (55)21-2553-3430

Notice

While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by JFE Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the JFE Steel office for the latest information.

Copyright © JFE Steel Corporation. All Rights Reserved. Any reproduction, modification, translation, distribution, transmission, uploading of the contents of the document, in whole or in part, is strictly prohibited.

2503P(1801) JTR Printed in Japan