

JFE LINE PIPE

Introduction

JFE Steel Corporation, one business segment of JFE group, is a world leading steel making company in Japan. Under the policy of prioritizing the global environment and human safety,

JFE Steel Corporation produces various steel products based on the worldwide superior quality control system certified by ISO 9001 and API Q1 standards.

JFE Steel Corporation has the world's most innovative technology, processing equipment and promotes R&D challenges.

JFE Steel Corporation's facilities include 2 integrated Steel works-one in Western Japan;

West Japan Works (Fukuyama) and (Kurashiki), the other in Eastern Japan near Tokyo;

East Japan Works (Chiba) and (Keihin),

and specialized pipe and tube production mill in middle Japan (Chita Works).

JFE Line Pipe is manufactured at these works in high volume, and high quality.

Products available include UOE (Straight seam double submerged arc welded pipe),

HFW (High frequency welded pipe), SMLS (Seamless pipe) and many other products made by various manufacturing processes.

--- --- --- ----

This catalogue introduces JFE Line Pipe made by each of these processes, with information on material preparation, pipe manufacturing, testing & inspection, coating and shipping.

Features of JFE Line Pipe

Package Supply Available in Wide Size Range and Large Quantity

JFE Line Pipe can be supplied with such varieties as UOE Pipe, High Frequency Welded (HFW) Pipe and Seamless Pipe (SMLS), realizing high availability in a wide size range and in large quantity.

UOE: available from 16in. up to 64in. OD (world's largest)

HFW : available up to 26in. OD, with wall thickness up to 1in. (world's largest)

SMLS: available up to 16-3/4in. OD

Note: 64in. OD over and heavy wall thickness can be supplied as Press Bending and Roll Bending Procees.

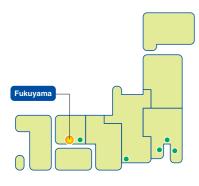
Excellent Quality and Abundant Variety

JFE can supply superior Quality High strength, High Toughness, Homogeneous material and Corrosion Resistant Line Pipes for various special service such as offshore and sour services.

UOE line pipe can be supplied as high strength line pipe up to Grade X100, and high toughness line pipe for low-temperature services and corrosive gas or crude oil service.

HFW line pipe can be supplied as high strength API grade line pipe up to 5L X80, and high grade line pipe for sour gas service and offshore service.

SMLS line pipe can be supplied with corrosion resistant alloy pipe (Martensitic Stainless Steel 12% Cr Line Pipe) and high strength API grade line pipe up to 5L X80 for crude oil, gas, water and slurry service.

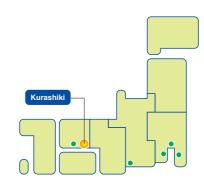

CONTENT Introduction Features of JFE Line Pipe 1 JFE Works 2 Facts about JFE Steel Corporation 7 Size Availability 8 Integrated Steelworks 20 Manufacturing Processes 24 Nondestructive Inspections 38 Material testing 49 Coating and Shipment 52 Technical Information 57 Specifications 62 For Inquiring and Ordering 72

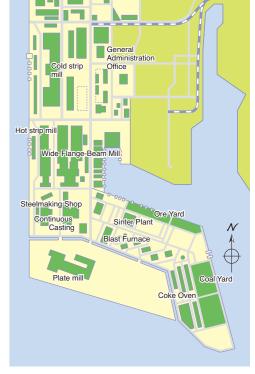

JFE Works

West Japan Works (Fukuyama)

West Japan Works (Fukuyama) has the largest capacity of any integrated steelworks in the world.

Since construction in 1965, Fukuyama continues to set the pace in introducing new concepts in steelmaking and environmental protection.



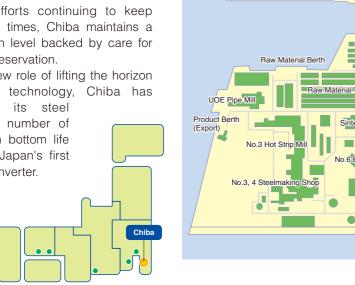

Plant Area: 3,514 acres (14,220,000m²)

West Japan Works (Kurashiki)

With its start in 1960, Kurashiki is particularly noted for its most advanced production system supported by highly sophisticated computerization and rational plant arrangement.

Kurashiki efficiently produces a great variety of steel products with the best technology and energy conservation promoting recirculation of natural resources.

Plant Area: 2,795 Acres (11,310,000m²)

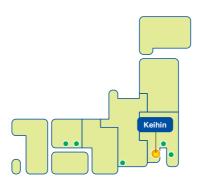

East Japan Works (Chiba)

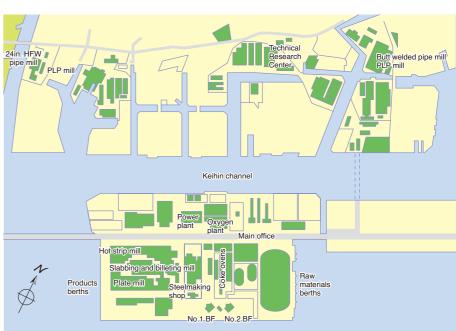
Built in 1951, Chiba played a brilliant role as a new leading force more than 50 years, especially in the modernization of the steel industry.

With equipment modernization and rationalization efforts continuing to keep abreast with the times, Chiba maintains a stable production level backed by care for environmental preservation.

Challenging a new role of lifting the horizon of steelmaking technology, Chiba has

established in its steel making shop a number of world records in bottom life and hit rate of Japan's first bottom blown converter.




Plant Area 2,035 acres (8,235,000m²)

East Japan Works (Keihin)

The Ohgisima Complex at Keihin was designed and built in the 1970s with the latest equipment for energy conservation and comprehensive environmental protection.

Computer control is used at unprecedented levels with the best known technology incorporated at every production stage.

Plant Area 2,333 Acres (9,440,000m²)

Chita Works

Established in 1943 primarily for special steel production, this Works used to manufacture only high-grade iron and steel castings.

In 1961, a spiral weld pipe mill was added to meet a growing demand for steel pipe and tubes, paving the way for various other pipe mills to be built here in succeeding years equipped with complete mass production systems for all kinds of pipe and tubular products, Chita today is one of the foremost tubular products centers in the world.

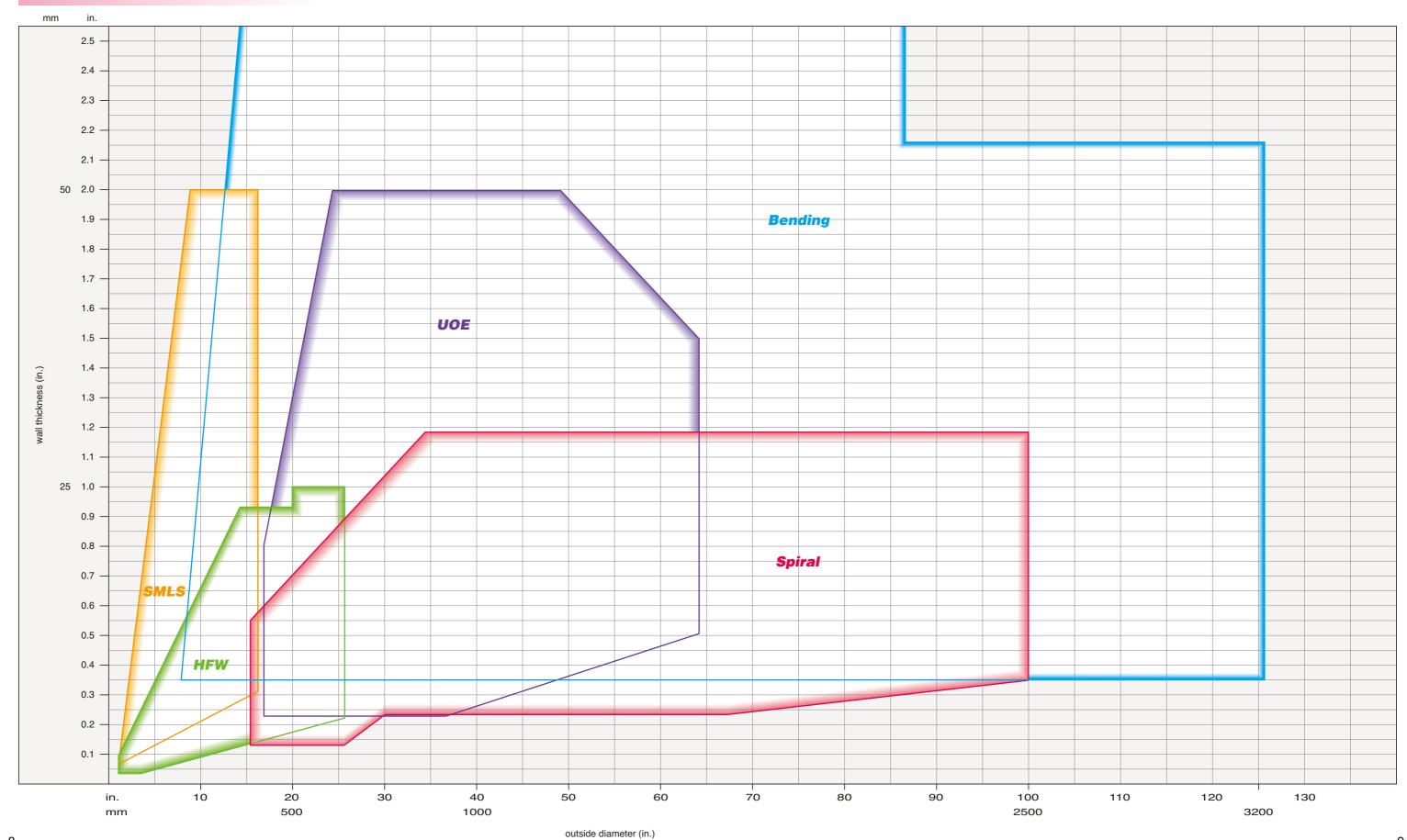
It supplies high-grade OCTG and other products for which the demand increase after the oil crisis of 1973.

Plant Area 577 acres (2,340,000m²)

Facts About JFE Steel Corporation

Integrated Steelmaking Complexes

Annual Production Capacity by Major Products


Submerged arc welded pipe · · · · 1,320,000 metric tons 940,000 metric tons High frequency welded tubular products Butt-welded pipe 360,000 metric tons Seamless tubular products 912,000 metric tons Heavy and medium plates · · · · 5,570,000 metric tons Hot rolled sheets and coils · · · · 21,800,000 metric tons Cold rolled sheets and coils · · · · 11,048,000 metric tons · · · · 5,558,000 metric tons Surface-treated sheets and coils Wide flange beam, sheet piling, rails, bars, wire rods · · · · 3,330,000 metric tons

Production Capacity of Welded Pipe and Seamless Pipe

Mill	Production Capacity (t./yr.)	Pipe OD MinMax., in. (mm)	Mill Location
UOE Pipe Mill	540,000	20 (508.0) ~64 (1,626.0)	Chiba
OOL Pipe Willi	580,000	15.7 (400) ~56 (1422.0)	Fukuyama
Chirol Wold Dino Mill	120,000	15.7 (400) ~102.4 (2600)	Chiba
Spiral Weld Pipe Mill	80,000	23.6 (600) ~100 (2540.0)	Fukuyama
High Frequency Weld Pipe Mill	640,000	0.840 (21.3)~26 (660.0)	Chita
riigh Frequency Weld Fipe Willi	300,000	7.5 (190.7) ~24 (610.0)	Keihin
Continuous Butt Weld Pipe Mill	360,000	0.840 (21.3) ~4 1/2 (114.3)	Keihin
Seamless Pipe Mills	912,000	1.000 (25.4) ~16 3/4 (426.0)	Chita

Size Availability

Size range for products

CARBON STEEL PIPE

■UOE Pipe

Pipe length: 12.2m (40ft)

	Wall thickness	in.	0.24	0.25	0.28	0.31	0.3	4 0.	.38	0.41	0.44	0.47	0.50	0.56	0.63	0.69	0.7	5 0.8	31 (0.88	0.94	1.00	1.06	1.13	1.19	1.25	1.31	1.34	1.38	1.42	1.44	1.50	1.56	1.63	1.69	1.75	1.88	2.00	Wall thickness	
O.D. (in.)	mm	mm	6.0	6.4	7.1	7.9	8.7	7 9	9.5	10.3	11.1	11.9	12.7	14.3	15.9	17.5	19.	1 20	.6 2	22.2	23.8	25.4	27.0	28.6	30.2	31.8	33.3	34.1	34.9	36.1	36.5	38.1	39.7	41.3	42.9	44.5	47.7	50.8	mm	O.D. (in.)
16	406.4		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	0	0	C																					406.4	16
18	457.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	0	0			0	\triangle																	457.0	18
20	508.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	×	7	☆	☆	0	0	Δ				\Diamond	\Diamond	\Diamond	\Diamond								508.0	20
21	533.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	Z [^]	7	☆	☆	0	0	0	Δ					\Diamond	\Diamond								533.0	21
22	559.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	Z [^]	7	☆	☆	☆	0	0	0	Δ				\Diamond	\Diamond								559.0	22
24	610.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	Z [×]	7	☆	☆	☆	☆	0	0	0	0	Δ	Δ	Δ	Δ			\Diamond	\Diamond	\Diamond	abla	∇	610.0	24
26	660.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	×	7	☆	☆	☆	☆	☆	0	0	0	Δ	Δ	Δ	Δ				\Diamond	\Diamond	∇	∇	660.0	26
28	711.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	×	7	☆	☆	☆	☆	☆	0	0	0	0	Δ	Δ	Δ				\Diamond	\Diamond	∇	∇	711.0	28
30	762.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	\$^	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ				\Diamond	abla	riangleright	762.0	30
32	813.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ				\Diamond	∇	riangledown	813.0	32
34	864.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ				\Diamond	∇	∇	864.0	34
36	914.0		☆	☆	☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	∇	914.0	36
38	965.0				☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	∇	965.0	38
40	1016.0				☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	∇	1016.0	40
42	1067.0				☆	☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	∇	1067.0	42
44	1118.0					☆	☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	riangledown	1118.0	44
46	1168.0						☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹.	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	∇	1168.0	46
48	1219.0						☆	7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹.	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ					∇	∇	1219.0	48
50	1270.0									☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ							1270.0	50
52	1321.0							7	☆	☆	☆	☆	☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ							1321.0	52
54	1372.0										☆	☆	☆	☆	☆	☆	☆	\$	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ							1372.0	54
56	1422.0										☆	☆	☆	☆	☆	☆	☆	\$	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ							1422.0	56
58	1473.0											☆	☆	☆	☆	☆	☆	₹.	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ							1473.0	58
60	1524.0											☆	☆	☆	☆	☆	☆	₹.	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ			\perp				1524.0	60
62	1575.0												☆	☆	☆	☆	☆	₹	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	Δ			\perp				1575.0	62
64	1626.0												☆	☆	☆	☆	☆	7	7	☆	☆	☆	☆	☆	☆	0	0	0	0	0	Δ	\triangle							1626.0	64

Note 1 ☆ Gr.×80 ◎ Gr.×70 ○ Gr.×65 △ Gr.×60 □ Gr.×52 ◇ Gr.×42 ▽ Gr.5LA (×○○: minimum specified yield strength, ksi)

2 Available length: 60ft (18.3m) length

3 Please consult with us about production ability before placing an order or at an inquiry, when any of the following pipes are required.

1) Heavy wall thickness pipes (t≥1.250in. For 22in. O.D., t≥1.562in. For 24in. O.D. and larger)

2) Long length pipe having an unit weight of around 19 ton or larger

3) Critical grade pipe of thicker side in the above table, having a length over 40ft

4) Pipe in intermediate wall thickness and out side diameter.

HFW Pipe

O.D.	Wall thickness		-			_			-	-							-					-	_		_				_					-	_	-	-		_				$\overline{}$	Wall thickness	O.D.
(in.)		mm	2.1	2.8	2.9	3.2	3.4	3.6	3.7	3.9	4.0	4.4	4.5	4.8	4.9	5.2	5.6	6.0	6.4	6.6	7.1	7.6	7.9	8.	1 8.4	8.7	9.5	10.3	11.1	11.9	12.7	13.5	14.3 1	5.1 1	5.9 16	.1 17.	5 18.	3 19.1	20.6	21.4	22.2	23.8	25.4		(in.)
0.840	21.3													_											_	+									+			+-	+	+	+	+	+	21.3	0.840
1.050	26.7									\dashv			+	\dashv																					+	+		+	+-	+	+	+-	+-	26.7	1.050
1.071	27.2												_	_																					+	+		+	+		+	+	+		1.071
1.315	33.4		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond															+	+		+	+	+	+	+	+	27.2 33.4	1.315							
1.339				\diamond		\Diamond	\Diamond	\Diamond	\diamond		\Diamond	-		\Diamond		\Diamond	\Diamond	\diamond	\diamond																+	+		_		_		+	+	34.0	1.339
1.660	34.0 42.2		\Diamond	\Diamond	\rightarrow		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\diamond	\Diamond	\Diamond	\Diamond	\Diamond		>	\Diamond									+	+		+	+	+	+	+	+	42.2	1.660							
1.681	42.7		\Diamond		\Diamond	-		\Diamond		\Diamond		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond			+			+						+	+		_	_	_	+	+	+	42.7	1.681						
1.900	48.3		\Diamond		\Diamond	-	\diamond	\Diamond		\Diamond			+									+			+	+	+	+	+	+	48.3	1.900													
1.913	48.6		\Diamond		\diamond	-		\Diamond	\Diamond	\diamond	\Diamond	\Diamond	\diamond	\Diamond	\Diamond	\Diamond	\Diamond			+			+						+	+		+	+	+	+	+	+	48.6	1.913						
2.375	60.3			\diamond														\diamond			\Diamond	\Diamond	\Diamond			+	\Diamond	\Diamond							+	+		+			+	+	+		2.375
2.382	60.5			\diamond	\Diamond													\Diamond	\diamond	\Diamond	\Diamond	\Diamond	\Diamond			_	\Diamond	+							+	+		+	+	+	+	+	+	60.3	2.382
2.875	73.0		\Diamond	\diamond	◇			П														\Diamond	\Diamond			+	\Diamond						+		+	-		+	+	+	+	+	+	60.5 73.0	2.875
3.000	76.3		\Diamond	\diamond	\Diamond																	\Diamond	-			+	\Diamond	-					+		+			+	+	+	+	+	+	76.3	3.000
3.500	88.9			\diamond	\Diamond																		\Diamond			-	\Diamond		\Diamond	\Diamond	\Diamond				+	+		_		+	-	+	+	88.9	3.500
3.508	89.1				\Diamond							\rightarrow											\Diamond			+	\Diamond			\Diamond	\Diamond				+							+	+	89.1	3.508
4.000	101.6		\Diamond	\diamond																							\Diamond	+		\Diamond	\Diamond		_		+	+		+	+	+	+	+	+	101.6	4.000
4.500	114.3			\Diamond	\Diamond	П																					\Diamond	+ -		\Diamond	\Diamond				+	+		_	_	_	+	+	+	114.3	4.500
5.504	139.8		\Diamond	\diamond																					_			\Diamond	\Diamond		\Diamond		_	+	+	+		+	+	+	+	+	+	139.8	5.504
5.563	141.3			\diamond	\Diamond																								\Diamond	\Diamond	\Diamond				+	+		_		+	-	+	+	141.3	5.563
6.504	165.2											_													_	_					\Diamond		_		+	+	+	+	+-	+-	+	+	+	165.2	6.504
6.625	168.3		\Diamond	\diamond																					_	_		+			\Diamond	+	+	+	+	+	+	+	+-	+	+-	+	+	168.3	6.625
8.516	216.3			~										0		0	0	0	0	0	0	0	0				0		0	0	0	0	0 (0 (+	+	+	+	+-	+	216.3	8.516
8.625	219.1									_				0	-	0	0	0	0		0		0		_		0		0	0		-		_				+	+-	+-	+	+-	+	219.1	8.625
10.528	267.4									_				0		0	0	0	0		0	0					0		0	0								+	+	_	+	+	+	267.4	10.528
10.750	273.1									_				0		0	0	0	0		0	0					0	+	0	0								+	+	+-	+	+	+	273.1	10.750
12.539	318.5									_				0		0	0	0	0		0	0	0		_		0	+	0	0	0								\Diamond		+	+	+	318.5	12.539
12.750	323.8									_			+	-	-	0		0	0		0		0							0					_				-		+	+	+	323.8	12.750
13.375	339.7									\rightarrow			_	\rightarrow	-	-	-	0		0				C					0			_	0 (_) ()			+	+	+	339.7	13.375
14.000	355.6															-		0				-			_	_	_	_	0			_	0 () (0) 0			\Diamond	\Diamond		355.6	14.000
16.000	406.4															0				0						_			0			_	_	_	_) 0		0				406.4	16.000
18.000	457.0																	0		0		_	_		_		0		_		_	-	0 (-		_				_				457.0	18.000
18.625	473.1													_				0		0					_	+	0		0		-	_	0 (_	_					_		473.1	18.625
20.000	508.0																	\Diamond		0									0			_	0 (_	_	_	_) 0				_		508.0	20.000
20.866	530.0		\dashv									+	+	\dashv			_	\Diamond		0	_	_	_				_		0			_	0 (_	_		-							530.0	20.866
22.000	559.0	\dashv	\dashv						\neg	+	_	\dashv	\dashv	\dashv	\dashv			\$		0			_				+		_		0	-				_								559.0	22.000
24.000	610.0											\dashv	\dashv	\dashv	\dashv					0			_		-	_	+	_	0		_	-	0 (-	-	_	-) 0				_		610.0	24.000
26.000	660.0												+	\dashv						0			_		_	_	+		0			-	0 (_	_		_		0			_		660.0	26.000
20.000	000.0																																											000.0	20.000

Note 1 © Gr.×70 Or.×65 Or.×56 Or.×52 Or.(×42×○): minimum specified yield strength, ksi)

2 Available length: 18ft (5.5m) to 66ft (20m)

3 Please consult with us about production ability before placing an order or at an inquiry, when any of the following pipes are required.

1) Pipe in intermediate wall thickness and out side diameter.

2) Grade ×80.

³⁾ Special requirement at low temperature toughness, sour gas use and critical hydrostatic test.

Seamless Pipe

D. (in)	Wall thickness	in.																		0.295 0 7.5								0.512 0.551 13.0 14.0													Wall thickness mm	
(in.) 0.748	mm 19.0	_	1 2.0	2.3	2.4	2.0	2.9	3.0	3.3	3.4	· 3.3	.5 4	+.0	4.0	0.0	0.0	0.4	0.0	7.0	7.5	7.9	0.0	9.	.0 10	1.0	11.0 12	2.0	13.0 14.0	15.0	10.0	17.0	10.0	19.0	20.0	25.0	30.0	32.0	35.0	40.0 45.0	0 50.0	19.0	n (in.
0.750	19.1								+-	+					-		$\overline{}$								_		-							_							19.1	0.75
0.839	21.3																																								21.3	0.83
0.843	21.4																																								21.4	0.84
0.854	21.7																																								21.7	0.85
0.906	23.0																																								23.0	0.90
0.984	25.0																							_																	25.0	0.98
0.990	25.2								_													_																			25.2	0.99
1.000	25.4																					-		_	-																25.4	1.00
1.071	26.7																					\rightarrow		_			_							_				_			26.7 27.2	1.0
1.252	31.8								+			_			_																						-				31.8	1.2
1.315	33.4																																								33.4	1.3
1.339	34.0																																								34.0	1.3
1.496	38.0																																								38.0	1.4
1.500	38.1																																								38.1	1.5
1.575	40.0																																								40.0	1.5
1.654	42.0																																								42.0	1.6
1.661	42.2														_																										42.2	1.6
1.681	42.7						-		+	_		_		_	\rightarrow										_																42.7	1.6
1.772	45.0																																								45.0	1.7
1.902 1.913	48.3																																								48.3 48.6	1.9
2.000	50.8								+			_			_																							-			50.8	2.0
2.008	51.0		_						+			_			-																										51.0	2.0
2.216	54.0																																								54.0	2.2
2.244	57.0																																								57.0	2.2
2.248	57.1																																								57.1	2.2
2.374	60.3																																								60.3	2.3
2.382	60.5																																								60.5	2.3
2.500	63.5																																								63.5	2.5
2.874	73.0														_																										73.0	2.8
3.004	76.3																																								76.3	3.0
3.500	88.9					_	+		+	+																											_				88.9	3.5
3.508	89.1 93.2						-	+	_	_		_			_																										89.1 93.2	3.5
4.000	101.6					-	+	+	+	+																												-			101.6	4.0
4.500	114.3						+		+	+		_			-																										114.3	4.5
5.000	127.0						+	+	+	+																															127.0	5.0
5.118	130.0																																								130.0	5.1
5.236	133.0																																								133.0	5.2
5.374	136.5																																								136.5	5.3
5.504	139.8																																								139.8	5.5
5.563	141.3																																								141.3	5.5
6.504	165.2																																								165.2	6.5
5.620	168.3	_				-	+	+	+-	+					_																									_	168.3	6.6
7.000 7.508	177.8 190.7						-	+	+	+																															177.8 190.7	7.0
7.626	190.7					+	+	+	+	+		+																													190.7	7.5
7.657	194.5						+	+	+	+		+																													194.5	7.6
8.516	216.3					1	+	+		+																															216.3	8.5
8.626	219.1						+	1																																	219.1	8.6
9.134	232.0							1																																	232.0	9.1
9.626	244.5							\perp																																	244.5	9.6
0.000	254.0																																								254.0	10.0
).528	267.4																																								267.4	10.5
).752	273.1																																								273.1	10.7
1.791	299.5					1																																			299.5	11.7
2.539	318.5						+	+	_	_	_	_		_	_																										318.5	12.5
2.748	323.8	_				-	+	+	+	+		+	_		-																										323.8	12.7
3.374	339.7					1	-	+		_		_	_	_	_	_																									339.7	13.3
4.000	355.6					-	+	+	+	+	+	+	-	+	+	-+	\rightarrow																								355.6	14.0
16.000 16.496	406.4					1	+	+	+	+		_		-	_	-	+																								406.4	16.0
0.490	419.0					-			-	_		_			+							_																			419.0 426.0	16.4 16.7

Note 1 schedule size 2 cold drawn size

2 a Void drawn size
3 Available grade is up to ×80
4 Please consult with us about production ability before placing an order or at an inquiry, when any of the following pipes are required.
1) Pipe in intermediate wall thickness and out side diameter.
2) X grade.
3) Special requirement at low temperature toughness, sour gas use and critical hydrostatic test.

CARBON STEEL PIPE

Bending Pipe

	Wall thickness in.	0.394	0.787	11.811	1.5	575 1.	969	2.3	62	2.756	3.150	3.150	3.543	3.937	4.331	4.724	5.118	5.512	5.906	Wall thickness	
	mm mm	10	20	30			50		0	70	80	80	90	100	110	120	130	140	150	mm	in.)
()	200			Ť																200	(,
8	216.3																			216.3	8
10	267.4	L. MAX	(6m																	267.4	10
	300	L. IVIAA	C. OIII																	300	
12	318.5																			318.5	12
14	355.6																			355.6	14
	400					L. MAX. 8m														400	
16						L. WAA. OIII															16
16	406.4																			406.4	16
18	457.0																			457.0	18
	500																			500	
20	508.0			L. N	MAX. 9m															508.0	20
22	559.0	L. MAX	(. 12m																	559.0	22
	600						IN. 9m													600	
24	610.0					MAX	ζ. 12m													610.0	24
26	660.0																			660.0	20
	700																			700	
28	711.0																			711.0	28
30	762.0																			762.0	30
	800																			800	
32	813.0																			813.0	32
34	854.0																			854.0	34
	900																			900	
36	914.0	L. MAX	(. 15m																	914.0	3
38	965.0									L. MIN. 6r	n									965.0	38
	1000							L. MIN	I. 9m	MAX. 9m					L. MIN.	3m				1000	
40	1016.0							MAX.							MAX. 6					1016.0	4
42	1067.0																			1067.0	4:
	1100																			1100	
44	1118.0																			1118.0	44
46	1168.0																			1168.0	46
	1200																			1200	
48	1219.0																			1219.0	4
70	1300																			1300	-
52	1321.0																				5
54	1372.0																			1321.0	5
54	1400																			1372.0	J.
F.C.																				1400	56
56	1422.0																			1422.0	30
00	1500																			1500	0/
60	1524.0																			1524.0	60
	1600			L. M.	1AX. 12m															1600	_
64	1625.0																			1625.0	6-
66	1676.0																			1676.0	6
	1700																			1700	
68	1727.0																			1727.0	6
	1800																			1800	
72	1829.0																			1829.0	7:
	1900																			1900	
76	1930.0																			1930.0	7
	2000																			2000	
80	2032.0																			2032.0	8
	2100																			2100	
84	2134.0																			2134.0	8
	2200																			2200	
88	2235.0																			2235.0	8
	2300									+							+			2300	
92	2337.0														+					2337.0	9
-	2400																			2400	
96	2438.0			L. MAX. 4n	m								-		-					2438.0	9
30	2500			L. IVIAX. 4n	111																
00																				2500	10
00	2540.0															-				2540.0	10
04	2600																			2600	
04	2642.0																			2642.0	10
	2700																			2700	
108	2743.0																			2743.0	10
	2800																			2800	
112	2845.0																			2845.0	11
	2900																			2900	
118	2997.0																			2997.0	11
	3000																			3000	
122	3099.0																			3099.0	12
	3100																			3100	
	3100																			3100	

Note 1 TS400MPA~TS490MPA 1 Seam Heavy Wall Thickness by Hot Forming

Note 2 Size exceeding above diagram may be supplied to special arrangement

Note 3 MAX. Weight 30tons

ALLOY PIPE (Stainless Steel Pipe)

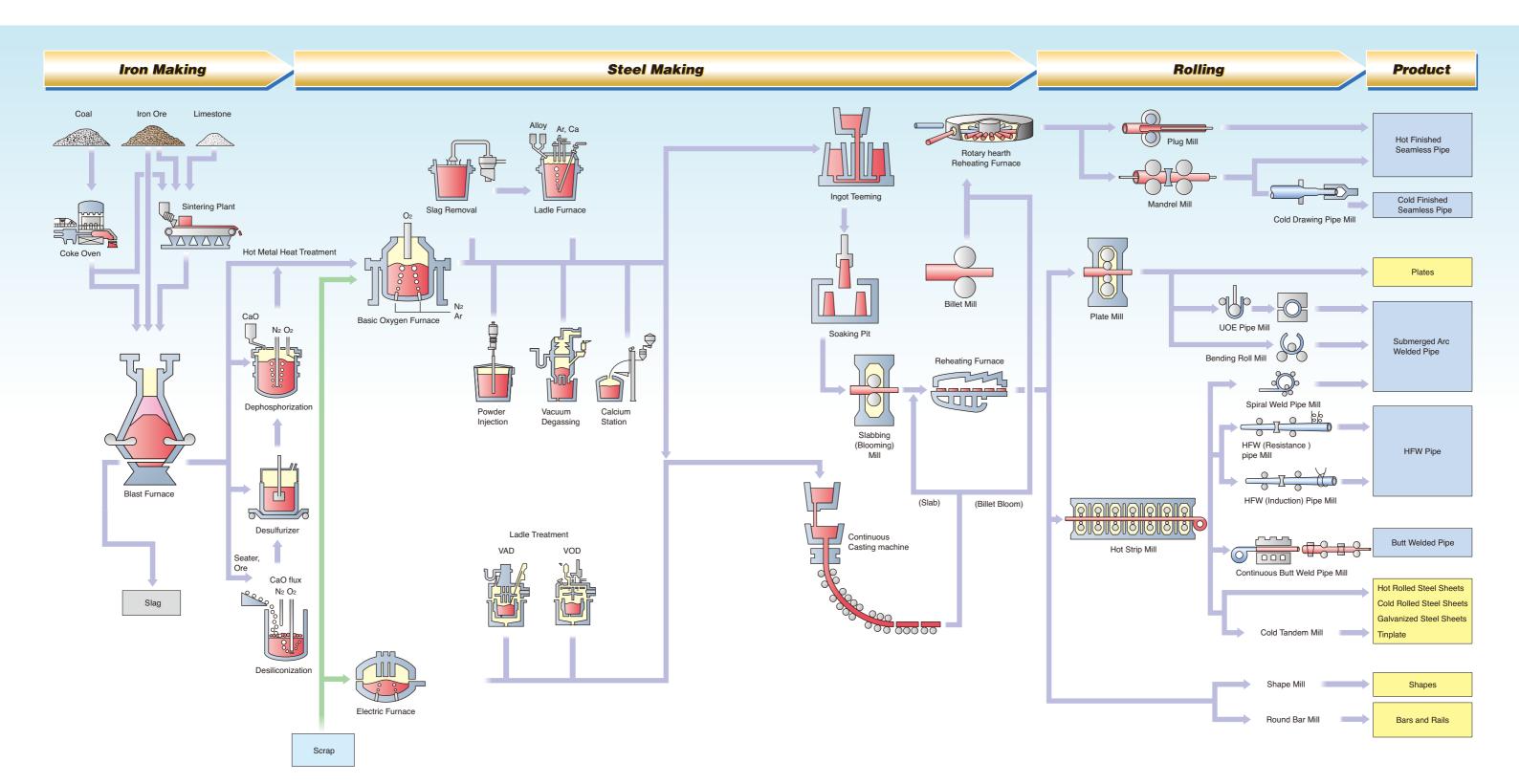
Welded Pipe

O.D.	Wall thickness in.	0.250	0.281	0.312	0.344	0.375	0.406	0.438	0.500	0.563	0.625	0.688	0.750	0.812	0.87	0.93	8	1.000	1.062	1.125	1.189	1.250	1.311	1.457	Wall thickness	O.D.
(in.)	mm mm	6.4	7.1	7.9	8.7	9.5	10.3	11.1	12.7	14.3	15.9	17.5	19.1	20.6	22.2	23.8	3	25.4	27.0	28.6	30.2	31.8	33.3	37.0	mm	(in.)
16	406.4	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	0												406.4	16
18	457.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	0	0										457.0	18
20	508.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	0									508.0	20
22	559.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0		0	0						559.0	22
24	610.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		0	0	0					610.0	24
26	660.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		0	0	0	0				660.0	26
28	711.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				711.0	28
30	762.0	0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				762.0	30
32	813.0		0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				813.0	32
34	864.0		0	0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				864.0	34
36	914.0		0	0	0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				914.0	36
38	965.0		0	0	0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				965.0	38
40	1016.0			0	0	0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		☆	0	0	0				1016.0	40
42	1067.0			0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0				1067.0	42
44	1118.0					0	0	0	0	0	0	0	0	0											1118.0	44
46	1168.0						0	0	0	0	0	0	0	0	0	0		0	0	0	0				1168.0	46
48	1219.0							0	0	0	0	0	0	0	0	0		0	Ó	0	0				1219.0	48
52	1321.0							0	0	0	0	0	0	0	0	0		0	0	0	0				1321.0	52
56	1422.0							0	O	0	0	0	0	0	0	0		0	Ó	O	0				1422.0	56

Note 1 ☆ is available 22% Cr steel, type 304 and 316 steels ○ is available type 304 and 316 steels 2 Maximum length is 12.2m

Seamless Pipe

Seame																															
O.D.	Wall thickness	in.	0.197	0.217	0.236	0.256	0.276	0.315	0.354	0.394	0.433	0.453	0.472	0.512	0.551	0.591	0.630	0.670	0.709	0.787	0.984	1.603	1.102	1.181	1.220	1.260	1.299	1.417	1.496	Wall thickness	O.D.
(in.)	mm	mm	5.0	5.5	6.0	6.5	7.0	8.0	9.0	10.0	11.0	11.5	12.0	13.0	14.0	15.0	16.0	17.0	18.0	20.0	25.0	27.0	28.0	30.0	31.0	32.0	33.0	36.0	38.0	mm	(in.)
2.374	60.3		0	0	0	0	0	0	0	0	0	0																		60.3	2.374
2.382	60.5		0	0	0	0	0	0	0	0	0	0																		60.5	2.382
2.500	63.5		0	0	0	0	0	0	0	0	0	0	0	0	0															63.5	2.500
2.874	73.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0														73.0	2.874
3.500	88.9			0	0	0	0	0	0	0	0	0	0	0	0	0														88.9	3.500
3.508	89.1			0	0	0	0	0	0	0	0	0	0	0	0	0														89.1	3.508
3.669	93.2			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0										93.2	3.669
4.000	101.6			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0									101.6	4.000
4.500	114.3			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0									114.3	4.500
5.000	127.0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								127.0	5.000
5.118	130.0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								130.0	5.118
5.236	133.0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								133.0	5.236
5.374	136.5					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								136.5	5.374
5.504	139.8					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								139.8	5.504
5.563	141.3					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								141.3	5.563
6.626	168.3					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							168.3	6.626
7.000	177.8					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							177.8	7.000
7.626	193.7						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							193.7	7.626
7.657	194.5							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							194.5	7.657
8.516	216.3							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					216.3	8.516
8.626	219.1							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			219.1	8.626
9.626	244.5							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			244.5	9.626
10.000	254.0								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							254.0	10.000
10.528	267.4								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							267.4	10.528
10.752	273.1								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		273.1	10.752
11.791	299.5									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				299.5	11.791
12.539	318.5									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		318.5	12.539
12.748	323.8									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			323.8	12.748
13.374	339.7										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			339.7	13.374
14.000	355.6										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	355.6	14.000
16.000	406.4												0	0	0	0	0	0	0	0	0	0	0	0	0	0				406.4	16.000


2 oschedule size range of Martensitic Stainless Steel 12% Cr

Integrated Steelworks

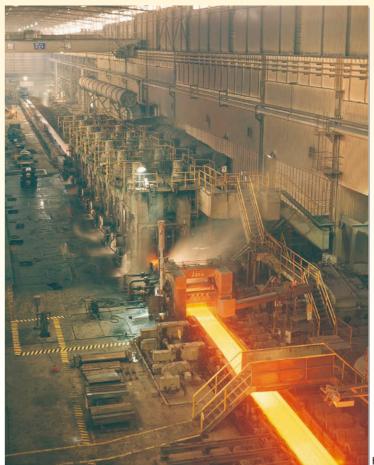
Backed by nearly 100 years of steelmaking experience, JFE Steel Corporation manufactures a complete line of steel and steel products.

Principal production facilities include 2 integrated steel works, one is West Japan Works (Fukuyama) and (Kurashiki), the other is East Japan Works (Keihin) and (Chiba) and specializing pipe making Works (Chita Works).

JFE annual crude steel capacity of 30.3 million tons, is one of the world's largest steelmaker. JFE leads the world with in advanced techniques at every stage of iron-making, steel-making and rolling processes.

 \sim 20 \sim 21

Principal Integrated Steelmaking Facilities and Equipment West Japan Works (Fukuyama)


Basic oxygen furnace

Continuous caster

Plate mill

Manufacturing Processes

Manufacturing Methods for JFE Line Pipe

JFE has started pipe production in 1912. Backed by our long experience and advanced technology, we can meet any customer requirements and specifications.

At presents we operate 10 welded pipe mills, two pipecoating mills and two seamless pipe mills.

The following diagrams show the manufacturing processes

used at JFE pipe and tube mills, including both the welded and seamless processes.

Welding Processes Submerged Arc Welding **UOE Process** 64-inch UOE Mill Chiba 56-inch UOE Mill Fukuyama Spiral Welded Process 100-inch Spiral Mill Fukuyama 60-inch Spiral Mill Chiba 100-inch Spiral Mill Chiba High Frequency Welding Electric Resistance Weld Process 26-inch HFW Mill Chita 24-inch HFW Mill Keihin **Electric Induction Weld Process** 6-inch HFW Mill Chita 3-inch HFW Mill Chita Continuous Butt Welding 4-inch CBW Mill Keihin Seamless Process Medium-Diameter Seamless Pipe Mill Mannesmann-Plug Mill Process Rolling Chita

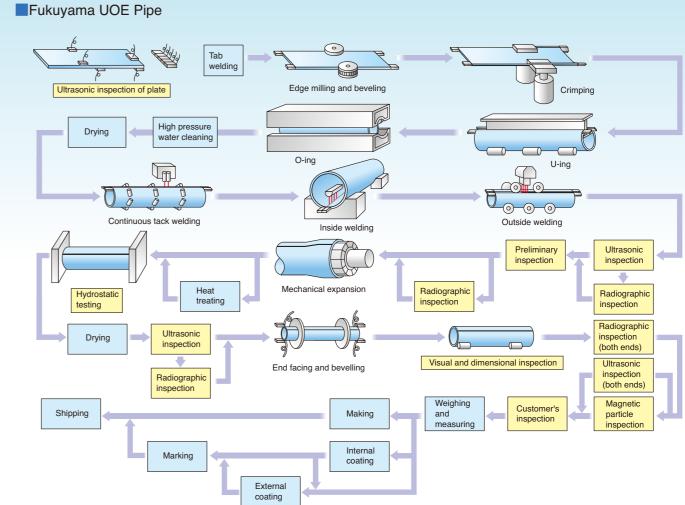
Small-Diameter Seamless Pipe Mill

Mannesmann-Mandrel Mill Process

UOE Pipe Mill

pressure water, then dried.

UOE Pipe is manufactured in two works, West Japan Works (Fukuyama) and East Japan Works (Chiba). This flow diagram is an example of Fukuyama mill. Each plate is subjected to ultrasonic inspection as deemed necessary before being transferred to the pipe mill. In the pipe mill, plate is trimmed and beveled on both longitudinal edges, then processed into a cylindrical shape by crimping, U-ing and O-ing press successively. The open can is washed inside and outside with high


Next it is passed to continuous tack welding facilities.

Subsequently, the seam is welded by automatic fourelectrode submerged arc welding method first on the inside, then on the outside.

The following step in the pipe fabrication process includes mechanical expansion and hydrostatic testing. The welded seam is inspected ultrasonically and radiographically.

JFE also manufactures high grade line pipe, structural pipe and stainless steel pipe. If necessary, heat treatment is applied to pipes including quenching and tempering, normalizing, stress relieving and solution treatment.

Location	Capacity		Size Range	
Location	(t./yr.)	OD	WT	Length
Fukuyama	580,000	15.7~56in. (400.0~1422.0mm)	0.236~2in. (6~50.8mm)	Max. 60ft (Max. 18.3m)
Chiba	540,000	20~64in. (508.0~1626.0mm)	0.250~1.75in. (6.35~44.5mm)	Max. 60ft (Max.18.3m)

 $\overline{}$

Chita

HFW Pipe Mill

HFW Pipe is manufactured in two works., East Japan Works (Keihin) and Chita Works.

This flow diagram is a standard process of Chita Works 26in mill.

High frequency weld pipe is made from strip in coil form. After being uncoiled, flat strip is trimmed by an edge miller, then progressively rounded by a number of cage rolls before welding.

Large diameter pipes are welded by the high frequency electric resistance method.

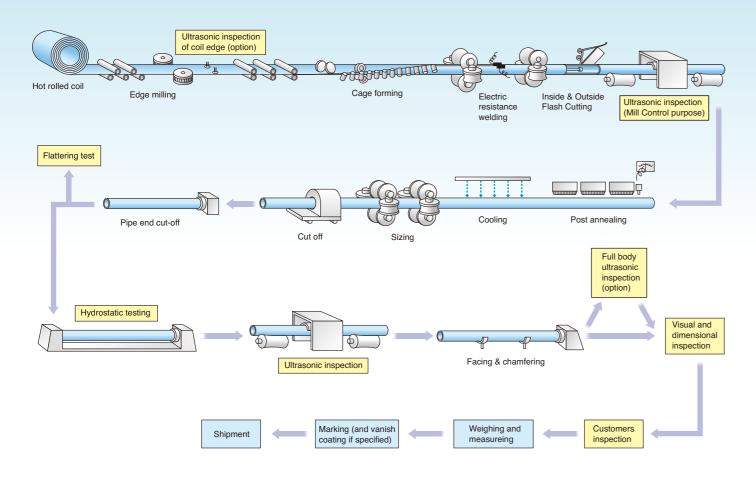
Continuously welded pipe is cut to the specified length by a milling cut off machine, with each length going through hydrostatic and ultrasonic inspection equipment before being the final product.

Loca	tion	Capacity		Size Range	
LUCA	IIIOII	(t./yr.)	OD	WT	Length
Keihin	24in mill	300,000	7~24in. (177.8~610.0mm)	0.188~0.752in (4.8~19.1mm)	Max. 60ft (Max. 18.3m)
Chita	26in mill	450,000	12.539~26in. (318.5~660.0mm)	0.188~1.00in (4.8~25.4mm)	18~66ft (5.5~20m)

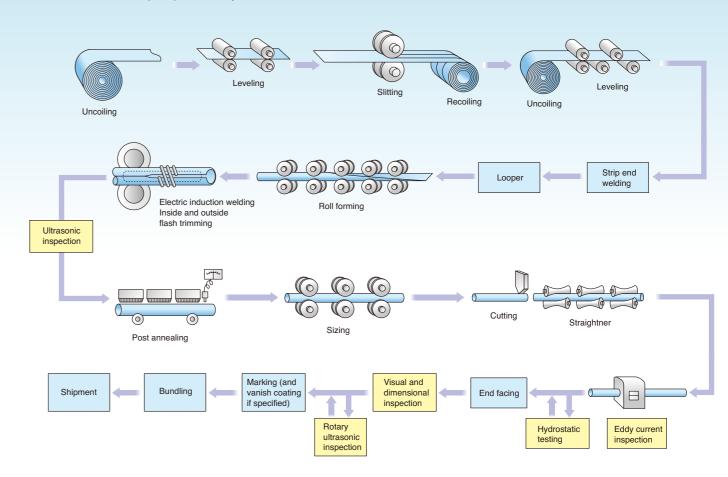
This flow diagram is a standard process of Chita Works 6in. mill.

Steel strip in coil, which has been slit into the required width from wide strip, is shaped by a series of forming rolls into a round shape.

Longitudinal edges are then continuously joined by high


frequency induction welding.

The weld of the pipe is then heat treated electrically, sized and cut off to specified lengths by a flying cut-off machine. The cut pipe is straightened and followed by non-


destructive inspection and hydrostatic testing.

Loca	ation	Capacity		Size Range	
Loca	alion	(t./yr.)	OD	WT	Length
Chita	6in mill	190,000	2.382~6.626in. (60.5~168.3mm)	0.071~0.5in (1.8~12.7mm)	13~52ft (4~16m)
Office	3in mill	130,000	1.315~3.004in. (33.4~76.3mm)	0.024~0.5in (0.6~12.7mm)	13~59ft (4~18m)

Medium-Diameter (26-in) HFW Pipe

Small-Diameter (6-in) HFW Pipe

Seamless Pipe Mill

Seamless pipe and tubes are produced either by the plug rolling mill or the mandrel mill in Chita Works.

The former process is used for producing mediumdiameter pipe and the latter for small-diameter pipe.

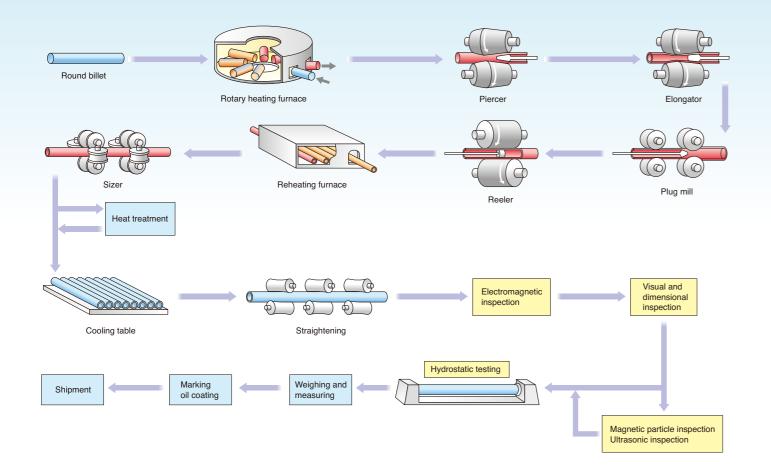
On either type of mill, a heated billet is pierced through its center on the piercing mill.

The pierced billet, then, moves to the plug rolling or mandrel mill where it is rolled with a plug or a mandrel bar inserted inside.

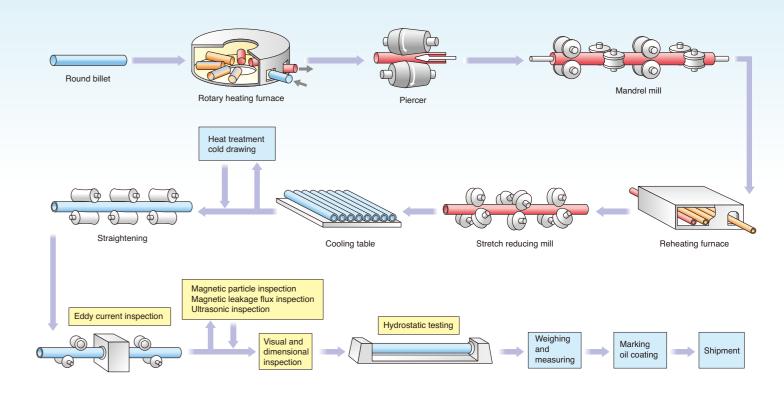
After the plug or the mandrel is withdrawn, the rolled shell is reheated before the process on a sizing mill or a stretch reducing mill where the desired OD and wall thickness are obtained.

During transportation of oil and gas, occurrence of CO2

corrosion becomes increasingly common due to the impurity of oil and gas.


To respond to this major problem, JFE has developed a martensitic stainless steel for line pipe applications, and successfully established its production technology based on the Mannesmann piecing process.

In addition to these hot rolled pipe and tubes, JFE also manufactures cold drawn pipe and tubes for the use where closer dimensional tolerances are required.


To consistently ensure high quality, the company conducts thorough testing and inspection by employing eddy current, ultrasonic, magnetic leakage flux and other advanced equipment.

	Location	Capacity		Size Range	
	Location	(t./yr.)	OD	WT	Length
Chita	Medium diameter pipe mill	468,000	7~16 3/4in. (177.8~426mm)	0.19~2.16in. (4.8~55mm)	18~44.6ft (5.5~13.6m)
Gilla	Small diameter pipe mill	444,000	1~7in. (25.4~177.8mm)	0.09~1.38in. (2.3~35mm)	13~50ft (4~15.3m)

Medium-Diameter Seamless Pipe

Small-Diameter Seamless Pipe

Spiral Weld Pipe Mill

Spiral welded pipe is manufactured in three works of JFE, West Japan Works (Fukuyama) and East Japan Works (Chiba).

This flow diagram is an example of West Japan Works (Fukuyama). Hot coil produced on a powerful, precision-rolling hot strip mill is uncoiled, and its leading end is joined to the trailing end of preceding strip by tandem electrode submerged arc welder to form an endless strip.

The endless strip is continuously passed through a leveler, an edge trimming and beveling machine and then into a forming stand.

The forming case shapes the strip into a cylindrical shell with a spiral seam, which is welded by tandem SAW equipment first inside, and then outside.

The welded pipe is cut to the required length by a traveling cut-off machine with a plasma torch.

Features of this mill, include a planer type edge preparing machine and a traveling plasma cutter.

Location	Capacity		Size Range*	
Location	(t./yr.)	OD	WT	Length
Fukuyama	80,000	23.6~100in. (600~2540mm)	0.236~1.188in. (6.00~30.2mm)	Max. 114ft 8in (35m)
Chiba	120,000	15.7~102.4in. (400~2600mm)	0.177~1.181in. (4.5~30mm)	20~131ft (6~40m)

^{*}Please consult with us before placing an order.

Roll and Press Bending Pipe Mill

Roll Bending Pipe Mill

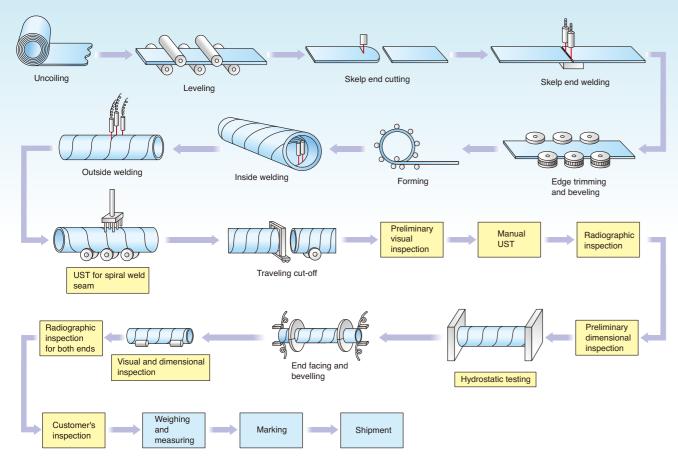
Roll bending pipe mill specializes in large diameter, heavy wall structural pipe up to 1.22in. (31mm).

In this mill, plate is gas cut on both longitudinal edges, and processed into a cylindrical shape by the three bending roll process.

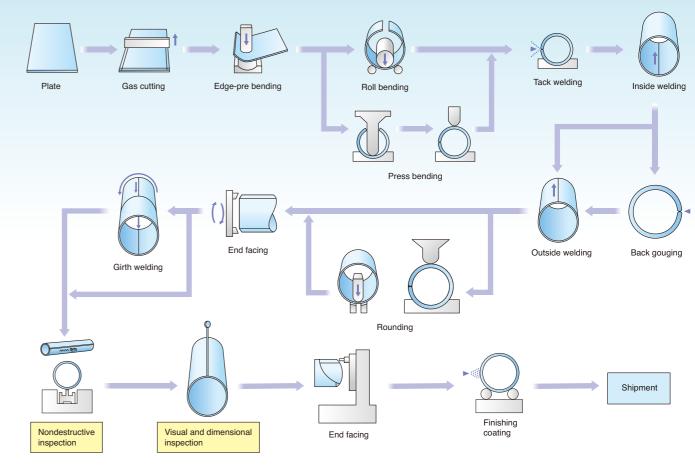
Open can is tack welded and subsequently seam welded by submerged arc welding method, first on the inside and then on the outside. Welded seam receives radiographic, dimensionall and visual inspections.

Press Bending Pipe Mill

This mill specializes in large diameter, heavy wall structural pipe up to 5.9in. (150mm).

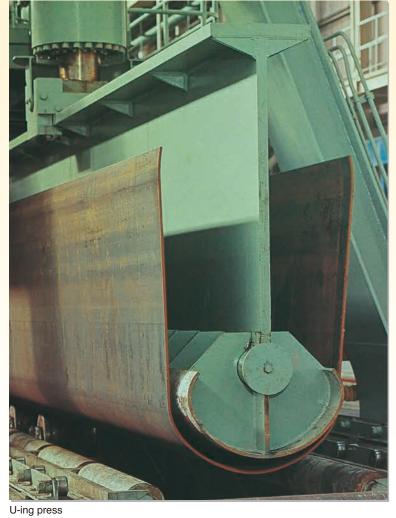

In this mill, plate is beveled on both longitudinal edges, and processed into a cylindrical shape by the press bending process.

Open can is track welded and subsequently seam welded


by submerged arc welding method, first on the inside and then on the outside.

The step that follows in pipe fabrication process includes rounding, nondestructive inspection of seam weld by both ultrasonic and radiographic, end facing and finishing.

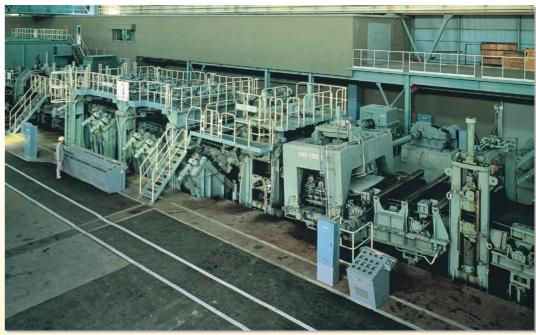
Fukuyama Spiral Pipe


Roll and Press Bending Pipe

UOE Pipe Mill West Japan Works (Fukuyama)

Crimping press

O-ing press



Automatic inside submerged arc welder

Automatic outside submerged arc welders

26in. High Frequency Weld Pipe Mill (Chita Works)

Forming Stand

Electric Resistance Welding

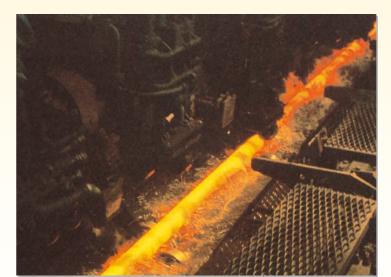
Seam Heat Treatment

6in. High Frequency Weld Pipe Mill (Chita Works)

Electric Induction Welding

Seamless Pipe (Plug Mill) (Chita Works)

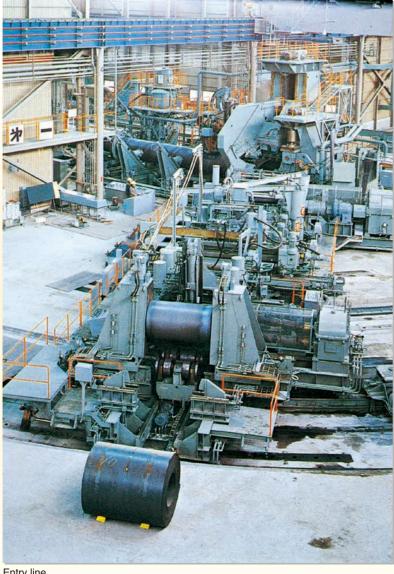
Plug mil



Elongator

Seamless Pipe (Mandrel Mill) (Chita Works)

Rotary Furnace



QT line

Mandrel Mil

Spiral Weld Pipe Mill West Japan Works (Fukuyama)

Entry line

Forming stand

Traveling cut-off machine

Nondestructive Inspections

Nondestructive Inspection

Plate Mill at West Japan Works (Fukuyama)

Nondestructive inspection is an integral part of pipe production.

The table below lists the various types of nondestructive inspection equipment for the purpose of reliable pipe quality.

Main Nondestructive Inspection Equipment for Welded Line Pipe

Application	Inspection Method	Name of Equipment	Number of units	Location			
			1	Fukuyama			
		Plate UST 1					
	Ultrasonic inspection		1	Keihin			
		Weld UST	3	Fukuyama			
		Weld 031	2	Chiba			
UOE		X-Ray inspection facility	3	Fukuyama			
	Radiographic inspection	A-nay inspection facility	1	Chiba			
	nadiographic inspection	Pipe-end X-Ray inspection facility	2	Fukuyama			
		ripe-elia A-nay ilispection facility	1	Chiba			
	Magnetic particle inspection	Magnetic particle inspection facility	2	Fukuyama			
	Magnetic particle inspection	Magnetic particle inspection facility	2	Chiba			
		Coil UST	1	Keihin			
	Ultrasonic inspection	Weld UST	2	Keihin			
HFW	Olliasonic inspection	Weld 031	3	Chita			
ПГVV		Full body UST	2	Chita			
	Eddy current inspection	Eddy current tester	1	Chita			
	Magnetic particle inspection	Magnetic particle inspection facility	1	Chita			
	Ultrasonic inspection	Full body UST	6	- Chita			
	On asome inspection	End area UST	1	Office			
Seamless	Electromagnetic inspection	Full body EMT	5	Chita			
Jeanness	Eddy current inspection	Full body Eddy current tester	4	Chita			
	Magnetic particle inspection	Full body MPI	3 Chita				
	Magnetic particle inspection	End area MPI	3	Offica			

Ultrasonic Inspection Plate Mill at West Japan Works (Fukuyama)

Every plate is ultrasonically checked for its internal soundness in accordance with customer's specification or mill's standard.

This device can inspect the whole volume of the plate at high sensitivity.

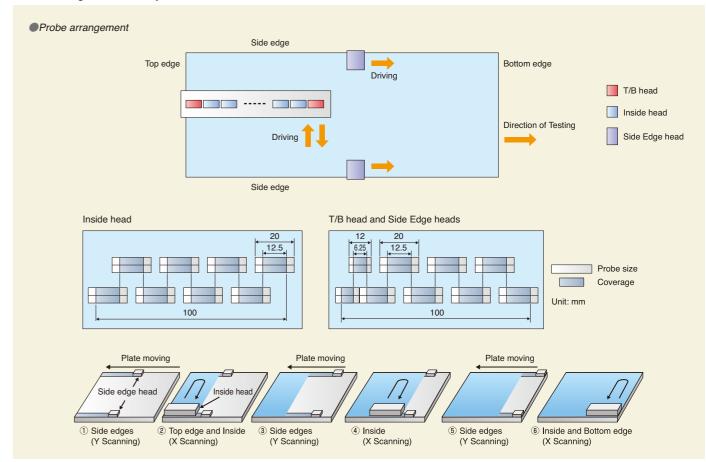
The fully automated tester graphically displays the quality of the plate and records each result by computer output.

Function

Thickness: 6.0mm to 60.0mm Width : 1.0m to 4.5m : 3.0m to 25.0m Length

Probe:

Inside :112ch (8 transducer x 14) Top &Bottom edges:18ch (9 transducer x 2) Side edges :18ch (9 transducer x 2)


Scanning method:

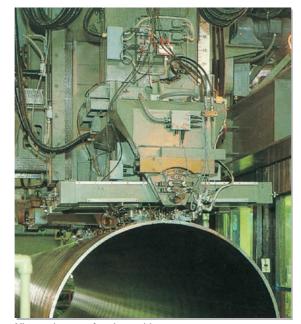
Side edges : Y scanning Inside & Top & Bottom edges: X scanning Be able to coverage for 100% of plate surface.

Ultrasonic tester for plate

Probe arrangement and layout.

Ultrasonic Inspection of Weld Seam

UOE Pipe Mill at West Japan Works (Fukuyama)


JFE uses the ultrasonic and radiographic methods for nondestructive inspection of submerged arc welded seams. Shown below are probe arrangement. This is capable of dectecting longitudinal and transverse imperfections.

Coupling checks linked to an audible warning device are used for a continual check of probe detection efficiency. If there is any indication that weld or adjacent areas are substandard, the following devices are automatically activated - audible alarm, marking and chart recording.

Function

Diameter: 406.4mm to 1422.4mm Wall thickness: 6.0~50.8mm

Probes: Max probes ·····20 probes

Ultrasonic tester for pipe welds

X-Ray Inspection of Weld Seam UOE Pipe Mill at West Japan Works (Fukuyama)

Any portion showing substandard indications in ultrasonic inspection is double checked with radiographic equipment.

JFE uses a special radiographic device desingned exclusively for the examination of pipe end welds.

Function

generators

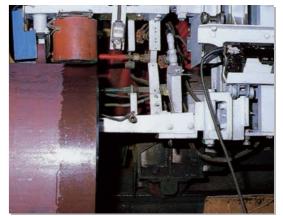
Pipe ends: 4 sets at 2 stations
Middle portion: 9 sets at 3 stations

(Before expansion: 3 sets, After expansion: 6 sets)

Amperage of the tubes: 30 mA Max. Voltage of the tubes: 320 KVP Max.

Focus size: 4x4 mm Max.

X-Ray equipment for pipe ends


X-Ray equipment for middle portion

X-Ray radiography Arrangement X-Ray Source (Focus) Penetrameter (Wire type) Film mark

Magnetic Particle Inspection UOE Pipe Mill at West Japan Works (Fukuyama)

Pipe end (bevel surface and weld seam) are magnetiezed and provided with magnetic particles.

The presence of flaws creates a magnetic flux which shows changes in fluorescent brilliance under black light. The change is detected visually.

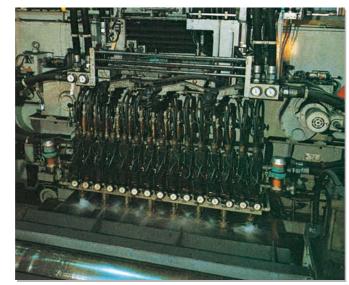
Magnetic particle test

(Lead screen)

Ultrasonic Inspection of Coil

24in. HFW Pipe Mill at East Japan Works (Keihin)

Strip is automatically inspected by an ultrasonic detector installed before the strip edge milling.


Edges of strip are examined to a width of at least 1 inch (25.4mm). Other parts of strip are examined by the probes which are arranged at intervals down to 4 inches and scan in a sinusoidal pattern. Usually a pulse reflection type detector is used.

Results of inspection are automatically recorded on the chart for each coil and paint-marked on the indicated portion.

Function

Width: Max. 1950mm Probes: Edge 8, Inside 20 Frequency: 5kHz

Note: Coil ultrasonic inspection is applied according to customer's requirement.

Ultrasonic tester for coils

Strip center detector Edge detector Edge detector

Ultrasonic Inspection of Weld Seam 26in. HFW Pipe Mill at Chita Works

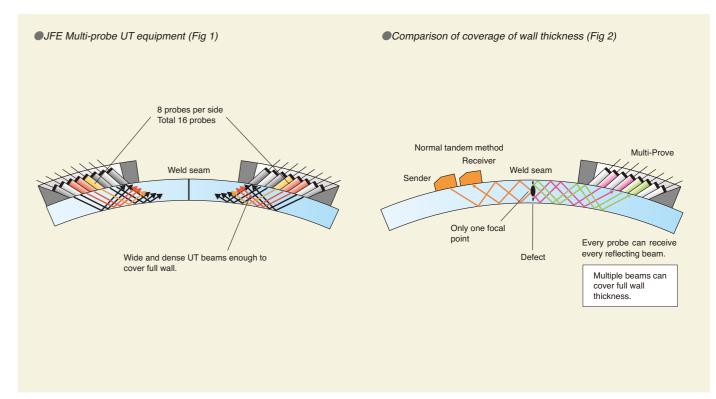
For the critical usage of such as line pipe. HFW weld seam reliability is the most important point. After the hydrostatic test, continuous ultrasonic inspection is performed on the full length of weld seam of each pipe with automatic weld-seam centering equipment.

The portion having any injurious imperfection that produces a signal greater than the acceptance limit is automatically marked and pipe is rejected.

JFE has been developed and applied most advanced ultrasonic system as a "multi-probe system" to 26in. HFW mill.

JFE's new "multi-probe system" consists of eight ultrasonic sender/receiver probes at one side (16 probes in total) arranged as Figure 1. 8 probes are set in one line with no gap and all probes will pulse and receive flaw signals at once. Therefore wider and more dense ultrasonic beams would be made through thickness and it can detect imperfections embedded in any portion of weld seam (Figure 2).

This new system enhances the reliability of JFE's HFW pipe to a highest level that no other mill can.


Function

Wall thickness: 4.0mm to 25.4mm
Diameter: 323.9mm to 660.4mm
Probes: 8 probes/side, Total 16 probes
Refraction angle: 45 degree

Transducer: 10mm×5mm
Frequency: 2kHz/probes

Ultrasonic tester for weld-seam

42 - 43

Full Body Ultrasonic Inspection

26in. HFW Pipe Mill at Chita Works

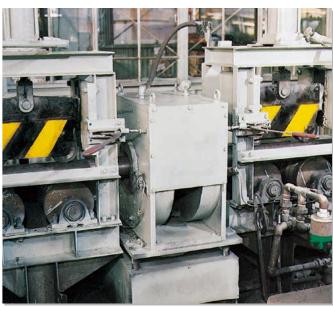
Lamination in full body can be inspected ultrasonically after hydrostatic testing.

The pipe of inspection is covered linearly and search unit for detection revolves around the pipe.

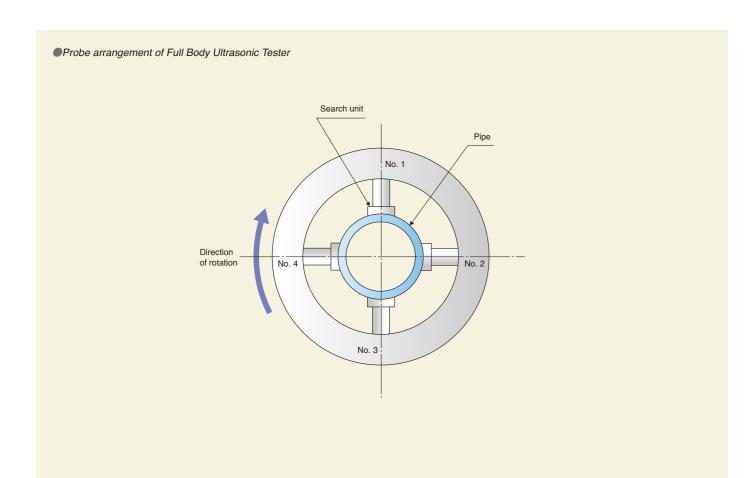
Longitudinal flaws in full body can also be inspected ultrasonically by Full Body Ultrasonic Tester.

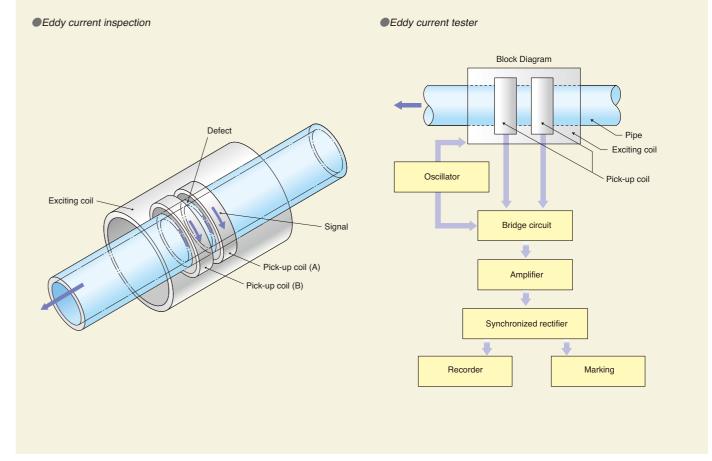
Function

Wall thickness: 4.0mm to 25.4mm
Diameter: 165.2mm to 660.4mm
Pulse repetition frequency: Max. 10kHz
Probe Number: Max. 12 probes



Rotary type Ultrasonic tester for Full body


Eddy Current Inspection 6in. HFW Pipe Mill at Chita Works


A coil in test coil assembly induces an eddy current around the circumference of the pipe as it passes through the assembly. Flaws disturb eddy current and are thus sensed by a pick-up coil in assembly.

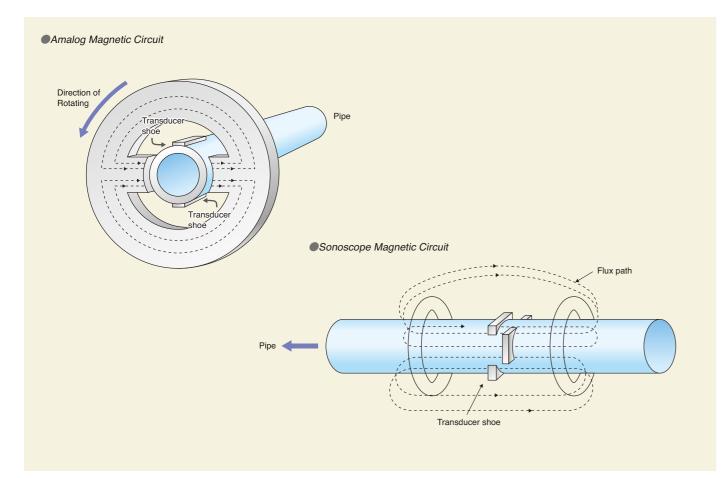
The apparatus is equipped with automatic warning, marking and chart recording systems.

Eddy current tester

Electromagnetic Inspection

Medium-diameter Seamless Pipe Mill at Chita Works

Plug mill is equipped with an Amalog-Sonoscope, electromagnetic inspection units after heat treatment.

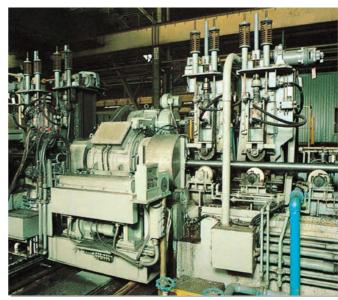

The Amalog-Sonoscope pipe inspection system detects defects by using flux leakage by electromagnetic induction in search coil.

Amalog magnetic circuits detect longitudinal defects in both the inside and outside surface.

Sonoscope magnetic circuits detect circumferential defects.

Electro magnetic tester

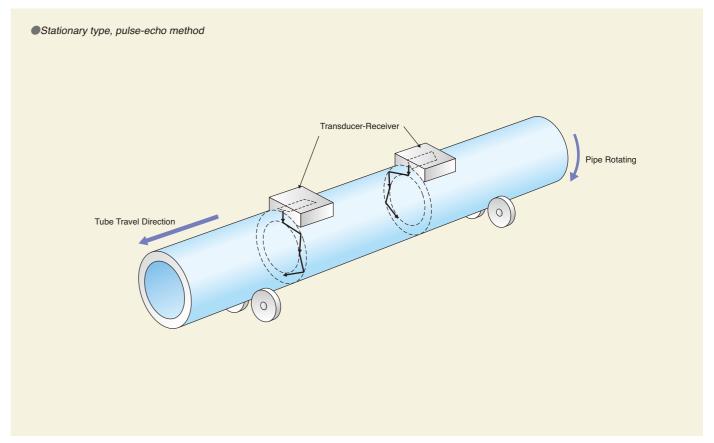
Ultrasonic Inspection


Small-diameter Seamless Pipe Mill at Chita Works

Ultrasonic inspection is in accordance with pulse-echo method using water gap method.

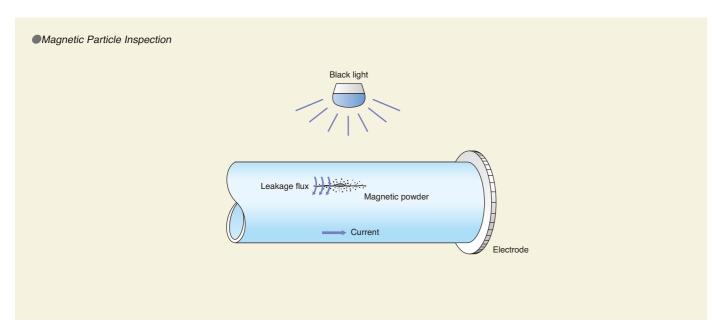
Flow detection is performed by angle beam technique to date longitudinal and transverse flow on the inner and

outer surface of pipe, and wall thickness measurement is performed by normal beam technique.


The pipe, which is conveyed helically through the testing device, is inspected.

Rotary type UST

Stationary type UST


Magnetic Particle Inspection (Seamless Mill)

The tube is magnetized and provided with magnetic particles (mostly fluorescent magnetic particle). The presence of flaws creates a magnetic flux which shows

changes in fluorescent brilliance under black light. The change is detected visually.

Magnetic Particle Test

Material Testing

Physical and Mechanical Testing

An Example of Apparatus for Physical and Mechanical Testing on West Japan Works (Fukuyama) and Chita Works.

West Japan Works (Fukuyama)

Equipment	Туре	,	Capacity	Number of Units		
			2000KN	1		
			1000KN	4		
Tensile Tester	Amsler		500KN	1		
			250KN	1		
			200KN	1		
			3000KN	1		
Bending Tester	Amsler		2000KN	1		
			500KN	1		
Charpy Impact Tostor	Pendulum	JIS	490J	2		
Charpy Impact Tester	rendulum	ASTM	490J	2		
Drop Weight Tear Tester	Drop Weight	Pendulum	39200Nm	1		
	Vickers		490N	2		
Hardness Tester	Brinell		29400N	1		
riaidiless lester	Rockwell		1470N	1		
	Micro Vickers		9.8N	2		
Profile Projector	Nikon Model-	12	X100	1		
Sulfide Stress Corrosion Tes	20KN	12				
Hydrogen Induced Cracking	Hydrogen Induced Cracking Tester					
CTOD	-	1				
Burst Tester	-	1				

Chita Works

Equipment	Туре	Capacity	Number of Units
		2000KN	1
Tensile Tester	Amsler	1000KN	1
		500KN	1
		100KN	1
Bending Tester	Amsler	2000KN	1
Charpy Impact Tester	Pendulum	490J	2
Drop Weight Tear Tester	Drop Weight Pendulum	39200Nm	1
	Vickers	490N	2
Hardness Tester	Brinell	29400N	1
	Rockwell	1470N	2
Profile Projector	Nikon Model-V12	X100	2
	Union Optical-UNIMET	X1000	1
Optical Microscope	Union Optical-VERSAMET	X1000	1
	OLYMPUS BX60M	X1000	1
Sulfide Stress Corrosion Cra	acking Tester	10KN	36
Hydrogen Induced Cracking	Tester	20ℓ	12
Scanning Electron Microsco	ре	-	1
CTOD		-	1

Chemical Analysis

An Example of Apparatus for Chemical Analysis on West Japan Works (Fukuyama) and Chita works.

West Japan Works (Fukuyama)

Classification	Apparatus	Number of Units	
Instrument Analysis	Vacuum Spectrometer	5	
Instrument Analysis	X-ray Fluoresent Spectrometer	2	
	Chemical Analysis Apparatus		
	For Carbon in Steel	4	
	For Sulfur in Steel	3	
Chemical Analysis	For Nitrogen in Steel	2	
	For Oxygen in Steel	2	
	For Hydrogen in Steel	2	
	Atomic Absorption Spectrophotometer	2	

Chita Works


Apparatus for Chemical Analysis

Classification	Apparatus	Number of Units		
Instrument Analysis	Vacuum Spectrometer	1		
Instrument Analysis	X-ray Fluoresent Spectrometer	1		
	Chemical Analysis Apparatus			
	For Carbon in Steel	1		
	For Sulfur in Steel	1		
Chemical Analysis	For Nitrogen in Steel	2		
	For Oxygen in Steel	1		
	For Hydrogen in Steel	1		
	Atomic Absorption Spectrophotometer	2		
	Spectrophotometer	1		

Typical Testing Machines

Large-scale impact tester (for DWTT and DT-test)

5,000-ton tester for structures

COD (Crack Opening Displacement) tester

Coating and Shipment

PLP for Large Diameter Pipes

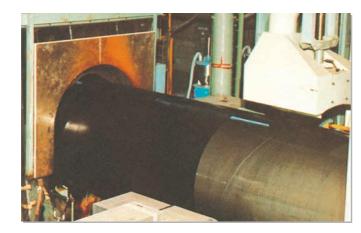
PLP is the trade name of pipe with an external plastic coating that gives superior corrosion resistance.

Plastic sheet is helically wrapped around the outside of the pipe and pressed against it as the rotates while travelling in the direction of its axis.

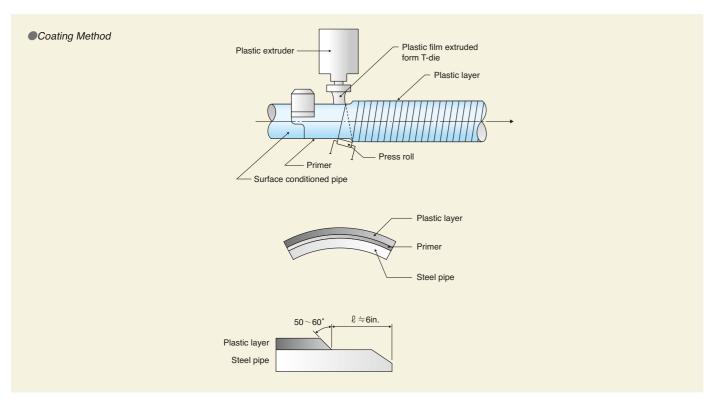
Any rust on the pipe is removed before application of the plastic sheet.

With this method, it is possible to coat pipe with relatively thick plastic coatings.

Moreover, with the proper adhesive layer this method can provide line pipe with heat resistance high enough for operating temperatures up to 110°C (230°F)


Pipe coated with plastic by this method combines excellent mechanical properties and stable chemical and electrical characteristics.

Applications


Plastic coating is designed for use in the following:

- General underground service
- · Highly corrosive soil service
- · Under water service
- · High and low temperature service

Applicable Plastic: Polyethylene, Polypropylene Method: Liquid primer, Powder epoxy primer

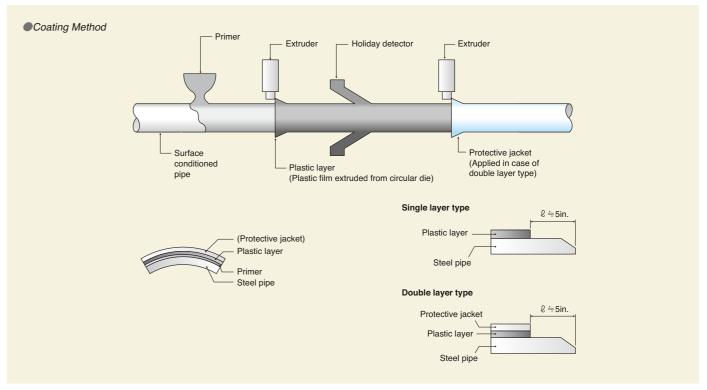
Location	Capacity	Size Range						
	(t./yr.)	OD	Pipe Length	Standard coating thickness				
Fukuyama	580,000	16~64in. (406.4~1625.6mm)	20~62ft (6~19m)	0.1~0.12in. (2.5~3.0mm)				

PLP for Small & Medium Diameter Pipes

PLP coating gives superior corrosion resistance.


It is ideal for applications where asphalt-wrapped pipe or coal tar enamel-wrapped pipe has been used. The pipe, removed any rust by blasting, is coated first with primer and next plastic film extruded from circular die continuously (in the case of double layer type, 2 times) PLP is also highly recommended for use where perfect pipeline reliability is required, such as in gas and fuel pipeline, for operating temperature up to 110°C (230° F). In addition to the product, we can offer field installation knowhow for PLP.

Applications

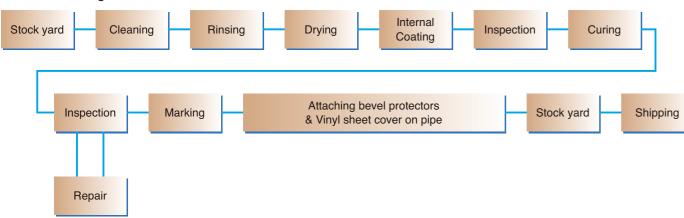

Plastic coating is designed for use in the following:

- General underground service
- · Highly corrosive soil service
- Under water service

Applicable Plastic: Polyethylene, Polypropylene

Location		Size Range						
	Capacity (t./yr.)	OD	Pipe Length	Standard coating thickness (Plastic layer)				
Keihin	140,000	1/2~24in. (21.7~609.6mm)	20~40ft (6~12m)	0.06~0.1in. (1.5~2.5mm)				

Internal Coating


An epoxy resin coating effectively reduces the friction resistance between the fluid and the pipe.

JFE has both the equipment and the technology to line the inside with the type of resin best suited to the intended application for the pipe, doing everything from descaling of the pipe surface before coating to the shipment of the finished product.


Thus around the world internally lined pipe from JFE

enjoys an excellent reputation for its stable performance. For transporting various other liquids from drinking water to crude oil, JFE can also supply pipe lined with the material that best matches the specific application.

Manufacturing Process

Location	Consoity	Size Range						
	Capacity (t./yr.)	OD	Length	Thickness of coating epoxy film				
Fukuyama	180,000	16~56in. (406.4~1422.4mm)	20~62ft (6~19m)	0.1~0.12in. (2.5~3.0mm)				

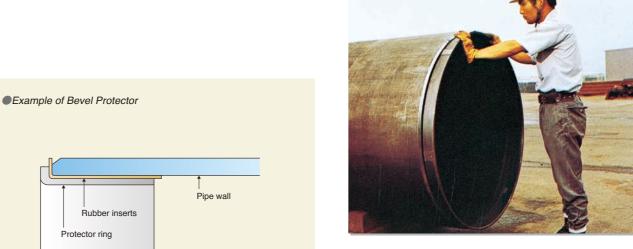
Internal coating

Internally coated pipe ready for shipment

Bevel Protectors

The photographs show how bevel protector is installed.

The protector is made of a steel strip forming into a circular shape.


The abutting ends of the ring are fitted with steel wedge

Bevel protectors of the type shown in the photographs are used for large diameter line pipe.

The wedge, which has either machined reverse teeth or plain edges, is inserted into the claps and tapped into place to expand the protector inside the pipe end.

This protects the vulnerable root face and bevel against damage during subsequent handling from mill shipment to arrival at the job site.

Ring expanding wedge

— Approx. 2 in. →

Wedge clasp

Handling, Storage and Loading Tiers

Improper practices or careless handling are likely to result in pipe damage of the following types:

- (a) Denting, ovalling caused by use of improper supports or stacking to excessive heights.
- (b) End damage caused by use of improper end hooks for lifting or by rough handling in which the pipe end is
- (c) Fatigue cracking caused by vertical vibrations during transportation as a result of excessive static and cyclic loads.
- (d) Abrasion, scratching caused by the pipe wall being rubbed or struck against other objects.

Handling

Hooks

Hooks shall be designed to prevent end damage and shall be lined with rubber. They shall also have sufficient width and depth to fit the inside of the pipe.

Lifting shall be carried out so as to prevent impact loads that could cause local denting or out-of-roundness of the pipe body or pipe ends.

Bevel protecting

Bevel protectors which are loose or missing shall be reattached to the pipe end before the pipe is handled.

The surface on which the pipe will be laid or stacked shall be flat and free of protrusions. Bearing strips shall be carefully leveled to provide uniform load distribution.

Pipe loading

Loading Tiers and Bottom Dunnage

The maximum allowable number of loading tiers the stowage of steel pipe cargoes (with D/t over 50) is calculated by the following formulas:

(1) n = P×10⁴
$$\sigma_Y$$
× $\frac{t}{(D-t)^2}$

n = Loading tires

P = Stowage method/length of vessel

Р	Length Vessel Stowage Method	120m ~ 160m	160m ~ 180m	180m ~ 200m	Over ~ 200m	Remarks
a.	→	5.65	6.05	6.25	6.78	Theoretical figure. not suitable for calculation.
b.	Y	3.07	3.29	3.54	3.69	In case of 1 point support.
C.	→	17.19	18.40	19.82	20.62	Theoretical figure. not suitable for calculation.
d.	X	6.85	7.33	7.90	8.21	In case of 2 point support.

D = Outside diameter (mm)

t = Thickness of pipe (mm)

 $\sigma_Y = \text{Minimum yield point (kg/mm}^2)$

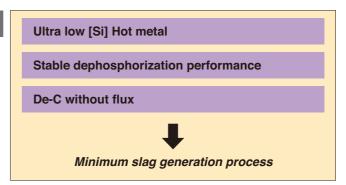
(2) Variations in (n) occurring with the use of bottom

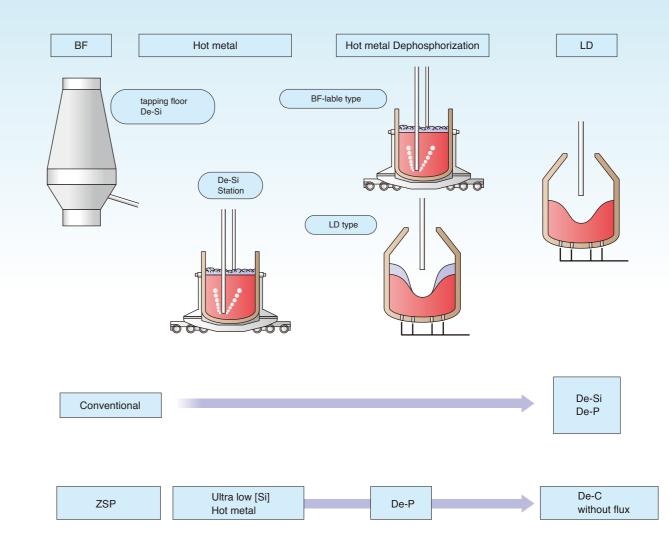
$$n = 1 + \frac{0.5 (L - BW)}{D}$$

L = Pipe length (m)

B = Number of pieces of bottom dunnage

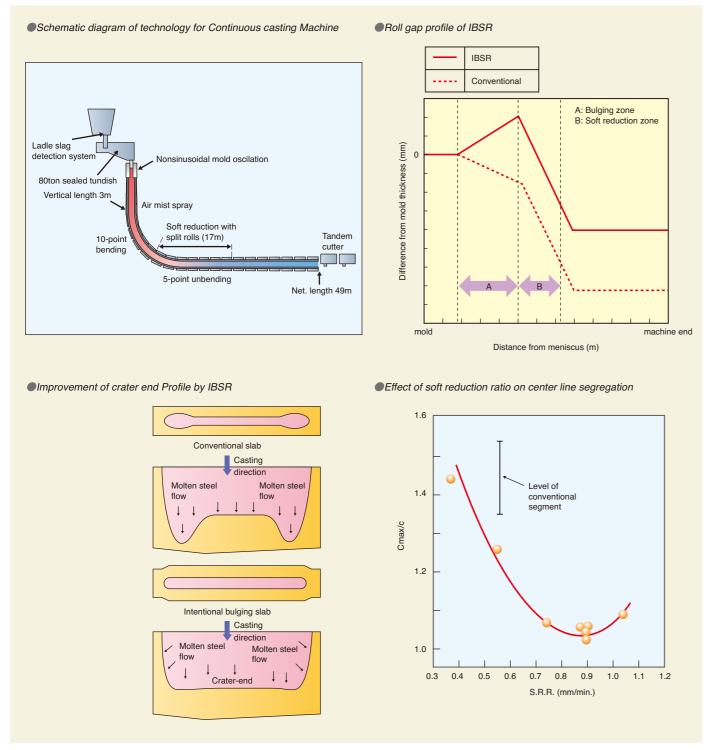
W = Width of bottom dunnage (m)



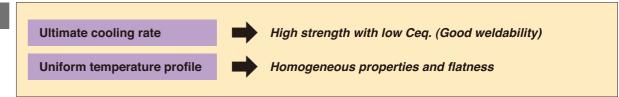

Yard-to-ship loading facility

Technical information

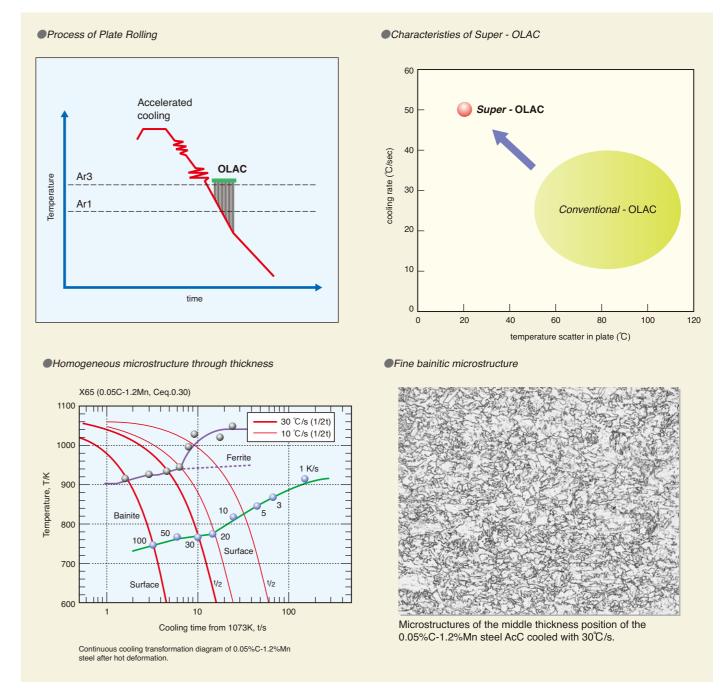
Zero-Slag Process


Features

IBSR


Improvement of Center-line Segregation by IBSR (Intentional Bulging and Soft Reduction)

Super - OLAC


Thermo mechnainical Controlled Process with Super-OLAC (Super On Line Accelerated Cooling)

Features

Major application

- · Sour resistance line pipe
- High strength line pipe (up to X100)
- · Heavy wall pipe

Martensitic Stainless Steel 12% Cr Seamless Linepipe

In the development of oil and gas, transportation of CO₂ corrosive oil and gas will become an increasingly common occurrence.

To handle this major problem JFE has developed a Martensitic Stainless Steel for lilepipe applications, JFE's Martensitic Stainless Steel 12% Cr.

Features

- 1. Good weldability as compared with conventional 13% Cr.
- 2. Excellent toughness in low temperature services
- 3. Excellent corrosion resistance to CO2 as good as OCTG13CR

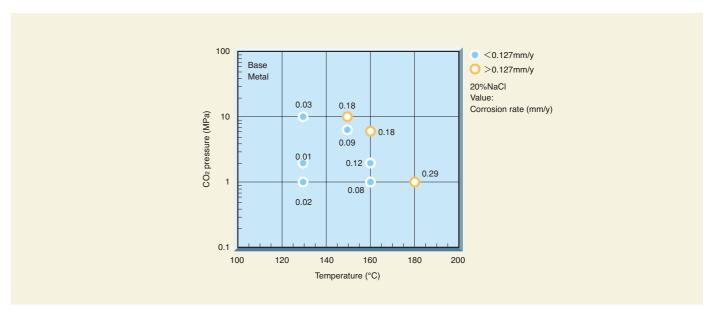
Typical application and chemistry design

JFE-12HP1-X80

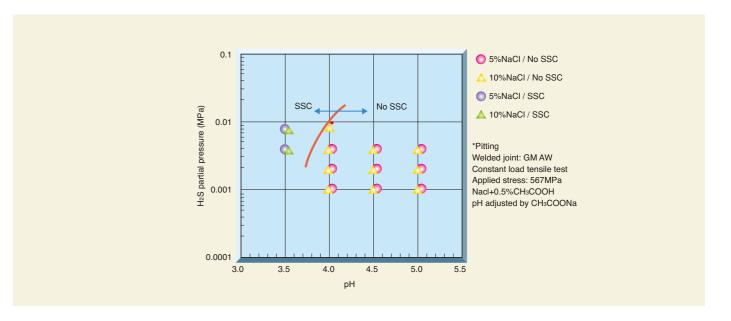
Light sour condition

LowC-12Cr-5Ni-2Mo

Characteristics


1 Mechanical Properties

	JFE-12HP1-X80
Yield strength at 20°C (68° F)	550-750 (MPa) 80.0-108.5 (ksi)
Tensile strength (MPa) at 20°C (68°F)	700-900 (MPa) 101.5-130.5 (ksi)
Elongation (%) at 20°C (68°F)	20
Absorbed Energy of Charpy-V impact Test at -20°C (-4°F)	≧75J (Ave.) 56J (Single) ≧55ft-Ib (Ave.) 41ft-Ib (Single)
Young's Modulus (MPa) at 20°C (68°F)	211000
Coefficent of Thermal Expansion $lpha$ (X10 ^{-6*} C ⁻¹)	12
Maximum Hardness Value of Base Metal	310 (HV10) 31.0 (HRC) 294 (HB)


2 Size Availability

Outside Diameter: From 2in. to 16in.

3 CO₂ Corrosion Resistance

4 H₂S Corrosion Resistance

5 Field Welding

GTAW (Gas Tungsten Arc Welding) and GMAW (GAS Metal Arc Welding) method are both available.

Specifications

Applicable specifications

JFE Steel Corporation produces tubular products to the specifications listed below. Other specifications can be also supplied.

				Manufacturing Method					
Spec	cification	Title	Arc Welding	High frequency Welding	Seamless	Butt welding			
API	5L	Line pipe	0	0	0	0			
ASTM	A53	Welded and Seamless Steel Pipe		0	0				
	A106	Seamless Carbon Steel Pipe for High-Temperature Service			0				
	A134	Electric-Fusion (Arc)-Welded Steel Plate Pipe	0						
	A135	Electric-Resistance-Welded Steel Pipe		0					
	A139	Electric-Fusion (Arc)-Welded Steel Pipe	0						
	A333	Seamless and Welded Steel Pipe for Low-Temperature Service		0	0				
	A334	Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service		0	0				
	A335	Seamless-Ferritic Alloy Steel Pipe for High-Temperature Service			0				
	A671	Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperature							
	A672	Electric-Fusion-Welded Steel Pipe for High Pressure Service at Moderate Temperature	0						
BS	1387	Steel Tubes and Tubulars Suitable for Screwing to BS21 Pipe Thread		0		0			
	3601	Steel Pipes and Tubes for Pressure Purpose Carbon Steel: Ordinary Duties	0	0	0	0			
	3602	Steel Pipes and Tubes for Pressure Purpose Carbon Steel High Duties	0	0	0				
	3603	Steel Pipes and Tubes for Pressure Purpose Carbon and Alloy Steel: Low Temperature Duties		0	0				
	3604	Steel Pipes and Tubes for Pressure Purpose Low and Medium-alloy Steel	0	0	0				
DIN	2440	Steel Tubes Medium weight Type Suitable for Screwing		0		0			
	1626	Welded Circular Unalloyed Steel Tubes Subject to special requirement	0	0	0				
	1628	High performance Welded Circular Unalloyed Steel Tube	0	0					
	1629	Seamless Circular Unalloyed Steel Tubes Subject to special requirement			0				
	17172	Steel Pipes for Pipe lines for the Transport of Combustible Fluids and Gases Technical	0	0	0				
		Conditions of Delivery							
JIS	G3452	Carbon Steel Pipes for Ordinary Piping		0		0			
	G3454	Carbon Steel Pipes for Pressure Service		0	0				
	G3455	Carbon Steel Pipes for High Pressure Service			0				
	G3456	Carbon Steel Pipes for High Temperature Service		0	0				
	G3457	Electric-Arc-Welded Carbon Steel Pipe	0						
	G3458	Alloy Steel Pipes			0				
	G3460	Steel Pipes for low Temperature Service		0	0				
CSA	Z245.1	General Requirements for Plain-End Welded and Seamless Steel Line Pipe	0	0	0				
AWWA	C200	Steel Water Pipe 6 Inches and Larger	0	0	0				
Gost	10704	Electric-Welded Steel Tubes	0	0					
	8731	Seamless Hot-Rolled Steel Tubes. Technical Requirement			0				
	8732	Seamless Hot-Rolled Steel Tubes. Range			0				
ISO	3183-1	Petroleum and natural gas industries-steel pipe for pipelines-Technical delivery condition	0	0	0	0			
		Part1: Pipe of requirement class A							
	3183-2	Petroleum and natural gas industries-steel pipe for pipelines-Technical delivery condition	0	0	0				
		Part2: Pipe of requirement class B							
	3183-3	Petroleum and natural gas industries-steel pipe for pipelines-Technical delivery condition	0	0	0				
		Part3: Pipe of requirement class C							
DNV	OS-F101	Submarine Pipeline Systems	0	0	0				

Chemical and Physical Requirements

■API (American Petroleum Institute)

0 17 11	Out de	PSL Process of (Product manufacture								Tensile Requirements					
Specification	Grade	Specification	S : Seamless	Ca	Mn ^a	Р	S	Ti	Other		Yield Stre	ngth, min.	Tensile Str	ength, min.	Elongation, %, min.
		Level)	W: Weld	Max.	Max.	Max.	Max.	Max.	Max.		psi	MPa	psi	MPa	GL=2in. (50.8mm)
	Class I	PSL1	S, W	0.21	0.6	0.030	0.030	_	_		25,000	172	45,000	310	
	A25 Class II	TOLI	J, W	0.21	0.0	0.045-0.080	0.000				23,000	172	43,000		
	Α	PSL1	S, W	0.22	0.90	0.030	0.030	-	-		30,000	207	48,000	331	
		PSL1	S	0.28		0.030	0.030		bcd		35,000	241	60,000	414	
	В		W	0.26	1.20			0.04							
		PSL2	S	0.24		0.025	0.015		d e		35,000-65,000	241-448	60,000-110,000	414-758	
			W	0.22											_
		PSL1	S	0.28		0.030	0.030				42,000	290	60,000	414	
	X42		W	0.26	1.30			0.04							-
		PSL2	S	0.24		0.025	0.015				42,000-72,000	290-496	60,000-110,000	0 414-758	
			W	0.22											
		PSL1	S	0.28		0.030	0.030				46,000	317	63,000	434	
	X46		1.40			0.04							LLO Contagna Unit Facultian		
	F	PSL2	S W			0.025	0.015				46,000-76,000	317-524	63,000-110,000	434-758	U.S. Customary Unit Equation $e = 625,000 \frac{A^{0.2}}{U^{0.9}}$
			S	0.28											SI Unit Equation
	PSL1	PSL1	W	0.26		0.030	0.030	0.030 0.04 0.015			52,000	359	66,000	455	$e=1,944 \frac{A^{0.2}}{U^{0.9}}$
	X52		S	0.24	1.40										e=minimum elongation in 2in.
5L (2004)		PSL2	W	0.22		0.025	0.015				52,000-77,000	359-531	66,000-110,000	455-758	(50.8mm) in per cent
		501.4	S	0.28		0.030 0.0	0.000		0.04 c d	56,000		386 71,000	400	rounded to nearest per cent	
	X56	PSL1	W	0.26	1.40			0.04			56,000	386	71,000	490	A= cross sectional area of the
	V20	PSL2	S	0.24	1.40	0.025	0.015	0.04			56,000-79,000	386-544	71,000-110,000	490-758	tensile test specimen (in.2) (mm2)
		FSLZ	W	0.22		0.023	0.013	15			30,000-79,000	300-344	71,000-110,000	490-738	U= specified tensile strength (psi)(MPa)
		PSL1	S ^f	0.28		0.030	0.030				60,000	414	75,000	517	
	X60	. 321	W ^f	0.26	1.40	0.550	0.000	0.04					. 5,500	J.,	
		PSL2	S ^f	0.24		0.025	0.015				60,000-82,000	414-565	75,000-110,000	517-758	
			W ^f	0.22											
		PSL1	S ^f	0.28	1.40	0.030	0.030				65,000	448	77,000	531	
	X65		W ^f	0.26	1.45			0.06							_
		PSL2	S ^f	0.24	1.40	0.025	0.015				65,000-87,000	448-600	77,000-110,000	531-758	
			W ^f	0.22	1.45										
		PSL1	S ^f W ^f	0.28	1.40 1.65	0.030	0.030				70,000	483	82,000	565	
	X70		S ^f	0.26	1.40			0.06							
		PSL2	W ^f	0.24	1.65	0.025	0.015				70,000-90,000	483-621	82,000-110,000	565-758	
			S ^f	0.24	1.40										
	X80	PSL2	W ^f	0.22	1.85	0.025	0.015	0.06			80,000-100,000	552-690	90,000-120,000	621-827	

Notes: a For each reduction of 0.01% below the specified maximum carbon content, an increase of 0.05% above the specified maximum manganese content is permissible up to a maximum of 1.50% for grades X42 through X52 up to a maximum of 1.65% for grades higher than X52 but less than X70, and up to 2.00% for Grade X70 and higher.

b The sum of Columbium (niobium) and vanadium contents shall not exceed 0.03%, except that, by agreement between the purchaser and manufacturer, an alternative maximum may be established.

c Columbium (niobium), vanadium, titanium, or combinations there of may be used at the discretion of the manufacturer. d The sum of the columbium (niobium), vanadium, and the titanium contents shall not exceed 0.15%.

e The sum of Columbium (niobium) and vanadium contents shall not exceed 0.06%, except that, by agreement between the purchaser and manufacturer, an alternative maximum may be established.

f Other chemical compositions may be furnished by agreement between purchaser and manufacturer, providing that limits of Footnotes d, and the tabular limits for phosphorus and sulfur are met.

ISO 3183-3 (1999)

Non-sour Service Applications

												pi	oe body ^m	^m (seamle	ss and weld	ded pipe)	Weld	seam ^m		Charpy V	-Notch impa	ct energy	
												Yield Str	ength Tensil	sile Strength	Ratio	Elongation q		D of mandrel	To	st Temperatu	ro	Average of	Min.
Steel name	С	Si	Mn ^a	Р	S	V	Nb	Ti	other b	CEV ^c	Pcm de	Rto	5	Rm	R to.5/R m ^{np}	L0=5.65√S0	Tensile	for bend test		ckness (t) m		three test	individual
												N/mi		mm² min.	max.	A % min.	Strength	T = wall thickness		CKIICSS (I) III	111	pieces	Value
												14/1111	11 11/111		max.	70 111111.		1 – Wall tillotticoo	t≦20	20 <t≦30< td=""><td>t>30</td><td>J</td><td>J</td></t≦30<>	t>30	J	J
L245NC	0.14	0.40	1.35	0.020	0.010				f	0.36	0.19	245 to	440	415	0.90	22	415	3T	TD-10℃	TD-20℃	TD-30℃	27	22
L290NC	0.14	0.40	1.35	0.020	0.010	0.05	0.05	0.04	f	0.36	0.19	290 to	440	415	0.90	21	415	3T	TD-10℃	TD-20℃	TD-30℃	30	24
L360NC	0.16	0.45	1.65	0.020	0.010	0.10	0.05	0.04	gh	0.43	0.22	360 to	510	460	0.90	20	460	4T	TD-10℃	TD-20℃	TD-30°C	36	30
L290QC	0.14	0.40	1.35	0.020	0.010	0.04	0.04	0.04	f	0.34	0.19	290 to	440	415	0.90	21	415	3T	TD-10℃	TD-20℃	TD-30°C	30	24
L360QC	0.16	0.45	1.65	0.020	0.010	0.07	0.05	0.04	gh	0.39	0.20	360 to	510	460	0.90	20	460	4T	TD-10℃	TD-20℃	TD-30°C	36	30
L415QC	0.16	0.45	1.65	0.020	0.010	0.08	0.05	0.04	gh	0.41	0.22	415 to	565	520	0.92	18	520	5T	TD-10℃	TD-20℃	TD-30°C	42	35
L450QC	0.16	0.45	1.65	0.020	0.010	0.09	0.05	0.06	gh	0.42	0.22	450 to	570	535	0.92	18	535	6T	TD-10℃	TD-20℃	TD-30℃	45	38
L485QC	0.17	0.45	1.75	0.020	0.010	0.10	0.05	0.06	gh	0.42	0.23	485 to	605	570	0.92	18	570	6T	TD-10℃	TD-20℃	TD-30℃	50	40
L555QC	0.17	0.45	1.85	0.020	0.010	0.10	0.06	0.06	b	y agreeme	nt	555 to	675	625	0.92	18	625	6T	TD-10℃	TD-20℃	TD-30℃	56	45
L290MC	0.12	0.40	1.35	0.020	0.010	0.04	0.04	0.04	f	0.34	0.19	290 to	440	415	0.90	21	415	3T	TD-10℃	TD-20℃	TD-30℃	30	24
L360MC	0.12	0.45	1.65	0.020	0.010	0.05	0.05	0.04	h	0.37	0.20	360 to	510	460	0.90	20	460	4T	TD-10℃	TD-20℃	TD-30℃	36	30
L415MC	0.12	0.45	1.65	0.020	0.010	0.08	0.06	0.06	gh	0.38	0.21	415 to	565	520	0.92	18	520	5T	TD-10℃	TD-20℃	TD-30℃	42	35
L450MC	0.12	0.45	1.65	0.020	0.010	0.10	0.06	0.06	gh	0.39	0.22	450 to	570	535	0.92	18	535	6T	TD-10℃	TD-20℃	TD-30℃	45	38
L485MC	0.12	0.45	1.75	0.020	0.010	0.10	0.06	0.06	gh	0.41	0.23	485 to	605	570	0.92	18	570	6T	TD-10℃	TD-20℃	TD-30℃	50	40
L555MC	0.14	0.45	1.85	0.020	0.010	0.10	0.06	0.06	b	y agreeme	nt	555 to	675	625	0.92	18	625	6T	TD-10℃	TD-20℃	TD-30℃	56	45

Sour Service Applications

OUUI OCIVIO	o / ippiloo																					
												pipe bo	dy ^m (seamle	ess and welde	ed pipe)	Weld	seam ^m		Charpy V	'-Notch impa	ct energy	
												Yield Strength	Tensile Strength	Ratio	Elongation q		D of mandrel	То	st Temperatu	ro	Average of	Min.
Steel name	С	Si	Mn ^a	Р	Si	V	Nb	Ti	other jk	CEV c	Pcm de	R t0.5	п	R to.5/R m ^{np}	L0=5.65√S0	Tensile			•		three test	individual
													Rm N/mm² main		A 0/ main	Strength	for bend test		ckness (t) m	pieces	Value	
												N/mm²	N/mm² min.	max.	A % min.		T = wall thickness	t≦20	20 <t≦30< th=""><th>t>30</th><th>J</th><th>J</th></t≦30<>	t>30	J	J
L245NCS	0.14	0.40	1.35	0.020	0.003					0.36	0.19	245 to 440	415	0.90	22	415	3T	TD-10℃	TD-20℃	TD-30℃	27	22
L290NCS	0.14	0.40	1.35	0.020	0.003	0.05	0.05	0.04		0.36	0.19	290 to 440	415	0.90	21	415	3T	TD-10℃	TD-20℃	TD-30℃	30	24
L360NCS	0.16	0.45	1.65	0.020	0.003	0.10	0.05	0.04	g	0.43	0.22	360 to 510	460	0.90	20	460	4T	TD-10℃	TD-20℃	TD-30℃	36	30
L290QCS	0.14	0.40	1.35	0.020	0.003	0.04	0.04	0.04		0.34	0.19	290 to 440	415	0.90	21	415	3T	TD-10℃	TD-20℃	TD-30℃	30	24
L360QCS	0.16	0.45	1.65	0.020	0.003	0.07	0.05	0.04	g	0.39	0.20	360 to 510	460	0.90	20	460	4T	TD-10℃	TD-20℃	TD-30℃	36	30
L415QCS	0.16	0.45	1.65	0.020	0.003	0.08	0.05	0.04	gl	0.41	0.22	415 to 565	520	0.92	18	520	5T	TD-10℃	TD-20℃	TD-30℃	42	35
L450QCS	0.16	0.45	1.65	0.020	0.003	0.09	0.05	0.06	gl	0.42	0.22	450 to 570	535	0.92	18	535	6T	TD-10℃	TD-20℃	TD-30℃	45	38
L290MCS	0.10	0.40	1.25	0.020	0.002	0.04	0.04	0.04		0.34	0.19	290 to 440	415	0.90	21	415	3T	TD-10℃	TD-20℃	TD-30℃	30	24
L360MCS	0.10	0.45	1.45	0.020	0.002	0.05	0.05	0.04		0.37	0.20	360 to 510	460	0.90	20	460	4T	TD-10℃	TD-20℃	TD-30℃	36	30
L415MCS	0.10	0.45	1.45	0.020	0.002	0.08	0.06	0.06	g	0.38	0.21	415 to 565	520	0.92	18	520	5T	TD-10℃	TD-20℃	TD-30℃	42	35
L450MCS	0.10	0.45	1.55	0.020	0.002	0.10	0.06	0.06	gl	0.39	0.22	450 to 570	535	0.92	18	535	6T	TD-10℃	TD-20℃	TD-30℃	45	38
L485MCS	0.10	0.45	1.55	0.020	0.002	0.10	0.06	0.06	gl	0.41	0.23	485 to 605	570	0.92	18	570	6T	TD-10℃	TD-20℃	TD-30℃	50	40

NOTE a For each reduction of 0.01% below the maximun carbon content, an increase of 0.05% manganese above the specified maximun value is permitted, with a maximun increase of 0.2%

- b Al total<0.006; N≤0.012; Al:N≥2:1(not available to titanium-killedsteels)
- c Ceq (=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15
- d Pcm=C+V/10+Mo/15+(Cr+Mn+Cu)/20+Si/30+Ni/60+5B
- e For seamless pipe, Pcm values 0.03 higher than the tabulated value are permitted, up to a maximun of 0.25 f Cu≤0.35; Ni≤0.30; Mo≤0.10; B≤0.0005
- g The sum of V, Nb, Ti shall not exceed 0.15%
- h Cu≦0.50; Ni≦0.50; Cr≦0.50; Mo≦0.5; B≦0.0005

- i For seamless pipe, sulfur content up to 0.008% is permitted

 j Al total < 0.006; N ≤ 0.012; Al:N ≥ 2:1 (not available to titanium-killedsteels); Cu ≤ 0.35(by agreement ≤ 0.10); Ni ≤ 0.30; Cr ≤ 0.30; Mo ≤ 0.10; B ≤ 0.0005

 k For where calcium is intentionally added, Ca/S shall be ≥ 1.5 when S > 0.0015%. For all type of pipe (seamless and welded) Ca shall be resistric to 0.006%
- I For these steel grades, a molybdenum content up to 0.35% may be agreed
- m Mechanical properties apply for wall thickness up to 25mm and shall be agreed for larger wall thicknesses.
- n The value for the yield strength ratio apply to the product "pipe". They cannot be required for the starting material. For grades L415MCS, L450MCS and L485MCS, the ratio may be increased by agreement to 0.93. For seamless pipe manufactured by a process of quenching and temperring, Rt0.5/Rm ratio greater than the tabulated values may
- p The Rt0.5/Rm ratio for M grades applies to transverse test pieces only.
- q These values apply to transverse test pieces taken from the pipe body. If longitudinal test pieces are tested, the values of elongation shall be 2 units higher.

DNV OS-F101 (2000)

Welded C-Mn steel line pipe 1) 2) 3) 4)

																		Yield Stren	th Tensile Strength	Ratio	Max. Hardness	Elongation	Chai			by V-Notch properties				
																				YS (Rt0.5)	(HV10)			Gas		Liquid			Charpy V-notch	
SMY	S C 5)	Si	Mn ⁵⁾	P	S	Cu	Ni	Mo	Cr ⁶⁾	T Al ⁷⁾	Nb ^{8) 9)}	V 8)	Ti ⁸⁾	N ⁷⁾	B 10)	CF 1	11) Pcm	12) MPa	MPa	1	BM,	As	Test	Tempera	ture	Test Temperature			energy	(KVT)
				·													5		(T) ¹⁴⁾	UTS (Rm) max	WM	Min. %		kness (t) r		thickness (t) mm			min.	J ¹⁶⁾
																				(a _n)(T) ¹⁵⁾	HAZ	(T+L)							Mean	Single
																							t≦20	20 <t≦40< td=""><td>t>40</td><td>t≦20</td><td>20<t≦40< td=""><td>t>40</td><td></td><td></td></t≦40<></td></t≦40<>	t>40	t≦20	20 <t≦40< td=""><td>t>40</td><td></td><td></td></t≦40<>	t>40		
245	0.14	0.40	1.35	0.020	0.010	0.35	0.30	0.10	0.30	0.06	-	-	-	0.010	0.0005	0.36	6 0.19	245	370	0.90	270	22	To=Tmin-10	To=Tmin-20		To=Tmin	To=Tmin-10		27	22
290	0.12	0.40	1.65	0.020	0.010	0.35	0.30	0.10	0.30	0.06	0.04	0.04	0.04	0.010	0.0005	0.34	0.19	290	415	0.90	270	21	To=Tmin-10	To=Tmin-20		To=Tmin	To=Tmin-10		30	24
360	0.12	0.45	1.65	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.05	0.05	0.04	0.010	0.0005	0.37	0.20	360	460	0.90	270	20	To=Tmin-10	To=Tmin-20	to be	To=Tmin	To=Tmin-10	to be	36	30
415	0.12	0.45	1.65	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.06	0.08	0.06	0.010	0.0005	0.38	0.2	1 415	520	0.92	270	18	To=Tmin-10	To=Tmin-20	agreed	To=Tmin	To=Tmin-10	agreed	42	35
450	0.12	0.45	1.65	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.06	0.10	0.06	0.010	0.0005	0.39	9 0.2	2 450	535	0.92	270	18	To=Tmin-10	To=Tmin-20	in each	To=Tmin		in each	45	38
485	0.12	0.45	1.75	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.06	0.10	0.06	0.010	0.0005	0.41	1 0.23	3 485	570	0.92	270	18	To=Tmin-10	To=Tmin-20	case	To=Tmin	To=Tmin-10	case	50	40
555	0.14	0.45	1.85	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.06	0.10	0.06	0.010	0.0005	0.44	4 0.2	5 555	625	0.92	300	18	To=Tmin-10	To=Tmin-20		To=Tmin	To=Tmin-10		56	45

Seamless C-Mn steel line pipe 1) 2) 4)

																CE	11)	Pcr	m ¹²⁾	Yield Strength	Tensile Strength	Ratio	Max. Hardness	Elongation			Charp	by V-Notch properties				
																						YS (Rt0.5)	(HV10)			GAS			Liquid		Charpy	V-notch
SMYS	C 5)	Si	Mn ⁵⁾	Р	S	Cu	Ni	Mo	Cr ⁶⁾	T Al ⁷⁾	Nb ⁸⁾	V 8)	Ti ⁸⁾	N ⁷⁾	B ¹⁰⁾					Мра	Maa	1	DM	As	Test	Tempera	ture	Test	Tempera	ture	energy	(KVT)
										17.		-				t≦15	15 <t<26< td=""><td>t≦15</td><td>15<t<26< td=""><td>(T+L) 13)</td><td></td><td>UTS (Rm) max</td><td>WM</td><td>Min. %</td><td></td><td>ness (t) ı</td><td></td><td></td><td>kness (t) r</td><td></td><td>min.</td><td>J ¹⁶⁾</td></t<26<></td></t<26<>	t≦15	15 <t<26< td=""><td>(T+L) 13)</td><td></td><td>UTS (Rm) max</td><td>WM</td><td>Min. %</td><td></td><td>ness (t) ı</td><td></td><td></td><td>kness (t) r</td><td></td><td>min.</td><td>J ¹⁶⁾</td></t<26<>	(T+L) 13)		UTS (Rm) max	WM	Min. %		ness (t) ı			kness (t) r		min.	J ¹⁶⁾
																						(an)(T) ¹⁵⁾	HAZ	(T+L)							Mean	Single
																									t≦20	20 <t≦40< td=""><td>t>40</td><td>t≦20</td><td>20<t≦40< td=""><td>t>40</td><td></td><td></td></t≦40<></td></t≦40<>	t>40	t≦20	20 <t≦40< td=""><td>t>40</td><td></td><td></td></t≦40<>	t>40		
245	0.14	0.40	1.35	0.020	0.010	0.35	0.30	0.10	0.30	0.06	-	-	-	0.010	0.0005	0.34	0.35	0.20	0.21	245	370	0.90	270	22	To=Tmin-10	To=Tmin-20		To=Tmin	To=Tmin-10		27	22
290	0.14	0.40	1.65	0.020	0.010	0.35	0.30	0.10	0.30	0.06	0.04	0.04	0.04	0.010	0.0005	0.34	0.35	0.20	0.21	290	415	0.90	270	21	To=Tmin-10	To=Tmin-20		To=Tmin	To=Tmin-10		30	24
360	0.14	0.45	1.65	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.05	0.07	0.04	0.010	0.0005	0.37	0.38	0.21	0.22	360	460	0.90	270	20	To=Tmin-10	To=Tmin-20	to be	To=Tmin	To=Tmin-10	to be	36	30
415	0.14	0.45	1.65	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.05	0.08	0.04	0.010	0.0005	0.39	0.40	0.22	0.23	415	520	0.92	270	18	To=Tmin-10	To=Tmin-20	agreed	To=Tmin	To=Tmin-10	agreed	42	35
450	0.15	0.45	1.65	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.05	0.09	0.06	0.010	0.0005	0.40	0.41	0.23	0.24	450	535	0.92	270	18	To=Tmin-10	To=Tmin-20	in each	To=Tmin	To=Tmin-10	in each	45	38
485	0.16	0.45	1.75	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.05	0.10	0.06	0.010	0.0005	0.41	0.42	0.24	0.25	485	570	0.92	300	18	To=Tmin-10	To=Tmin-20	case	To=Tmin	To=Tmin-10	case	50	40
555	0.16	0.45	1.85	0.020	0.010	0.50	0.50	0.50	0.50	0.06	0.06	0.10	0.06	0.010	0.0005	0.43	0.44	0.26	0.27	555	625	0.92	300	18	To=Tmin-10	To=Tmin-20		To=Tmin	To=Tmin-10		56	45

- Note 1) Chemical composition applies for wall thickness up to 35mm and shall be subject to agreement for larger wall thickness
 - 2) When scrap material is being used in steel production, the amount of the following residual elements shall be determind and reported and the lebels shall not exceed: 0.03%As, 0.01%Sb, 0.02%Sn, 0.01%Pb, 0.01%Bi and 0.006%Ca.
 - 3) When calcium is intentionally added, the Ca/S ratio shall be≥1.5 when S>0.0015
 - 4) Except for deoxidation elements, other elements than those mentioned in this table shall not be intentionally added if not specifically agreed.
 - 5) For each reduction of 0.01% carbon below the maximun specified value, an increase of 0.05% manganese above the specified maximun value is permitted with a maximun increase of 0.1%.

 - 6) 0.5-1.0% Cr may be used subject to agreement.
 7) Al:N≧2:1 (not applicable for titanium killed steels)
 - 8) (Nb+V+Ti)% maximun: 0.12%. This value may be increased to maximun 0.15% subject to agreement.

- 9) For SMYS≥485Mpa and for cladded material, the Nb content may be increased to 0.10% subject to agreement. 10) Boron (max. 30ppm) may be added subject to agreement.
- 11) CE=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
- 12) Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B
- 13) The actual yield strength in the longitudinal direction shall not exceed SMYS by more than 120Mpa.
- 14) SMYS in the longitudinal direction, can be 5% less than the required values in transverse direction.

 15) The YS/UTS ratio in the longitudinal direction shall not exceed the maximun specified value in the transverse direction, by more than 0.020 for standard material, and more than 0.030 for sour service material.

 16) The KVL value (when tested) shall be 50% higher than the required KVT values.

Dimensional Tolerances

Item		API	5L (2004)		ISO3183-3 (1999)	D	NV OS-F101 (2000)
Outside Diameter	Pipe Body Welded Pipe	$OD < 2^3/\sin$. (60.3mm) $\ge 2^3/\sin$. (60.3mm) and < 20in. (508.0mm) ≥ 20 in. (508.0mm) and > 36in. (914.0mm) > 36in. (914.0mm)	+0.016in. (+0.41mm) -0.031in. (-0.8mm) ±0.75% +0.75%, -0.25% 1/4in. (+6.4mm), -1/8in. (-3.2mm)	D≦610mm 610 <d≦1430m D>1430mm</d≦1430m 	±0.5mm or ±0.75%D but max. ±3mm ±0.5%D but max. ±4mm by agreement	D≦610mm D>610mm	\pm 0.5mm or \pm 0.75%D but max. \pm 3mm \pm 0.5%D but max. \pm 4mm
	Pipe Body Seamless Pipe	OD<2 ³ / ₈ in. (60.3mm) ≥2 ³ / ₈ in. (60.3mm) and<20in. (508.0mm) ≥20in. (508.0mm)	+0.016in, (+0.41mm) -0.031in (-0.8mm) ±0.75% ±1.00%	D≦610mm 610 <d≦1430m D>1430mm</d≦1430m 	by agreement	D≦610mm D>610mm	±0.5mm or ±0.75%D ±1%D
	Pipe Ends (a) OD>20in. (with diameter tape)	OD≤10 ³ /4in. (273.1mm) >10 ³ /4in. (273.1mm) and≤20in. (508.0mm) >20in. (508.0mm) and≤42in. (1067.0mm) >42in. (1067.0mm)	+1/16in. (1.6mm), -1/64in. (0.4mm) +3/32in. (2.4mm), -1/32in., (0.8mm) +3/32in. (2.4mm), -1/32in., (0.8mm) +3/32in. (2.4mm), -1/32in., (0.8mm)	D≦610mm 610 <d≦1430m D>1430mm</d≦1430m 	±0.5mm or ±0.5%D but max. ±1.6mm welded pipe: ±1.6mm seamless pipe: ±2.0mm by agreement	D≦610mm D>610mm	±0.5mm or±0.5% D but max. ±1.6mm welded pipe: ±1.6mm: seamless pipe: ±2.0mm:
Wall Thickness	Welded Pipe	OD ≤ 2^7 /sin. (73.0mm) > 2^7 /sin. (73.0mm) and < 20in. (508.0mm) ≥ 20in. (508.0mm)	Grade B or Lower GradeX42 or Higher +20.0%, -12.5% +15.0%, -12.5% +15.0%, -12.5% +15.0%, -12.5% +17.5%, -12.5% +19.5%, -8.0%	SAW pipe T≦6mm 6 <t≦15mm 15<t≦20mm="" t="">20mm</t≦15mm>	±0.5mm ±0.75mm ±1.00mm +1.50mm -1.00mm	T≦15mm 15 <t<20mm T≧20mm</t<20mm 	±0.75mm ±1.0mm ±1.5mm -1.0mm
	Seamless Pipe	OD $\leq 2^7$ /sin. (73.0mm) >2 ⁷ /sin. (73.0mm) and <20in. (508.0mm) ≥20in. (508.0mm)	+20.0%, -12.5% +15.0%, -12.5% +15.0%, -12.5% +15.0%, -12.5% +15.0%, -12.5% +17.5%, -10.0%	T<4mm 4≦T<10mm 10≦T<25mm T>25mm	+0.6mm/-0.5mm +15%/-12.5% +12.5%/-12.5% (for D≧273mm and D/T> 20; +15%/-12.5%) +3.75mm or +10%, -3.0mm or -10%	T≦15mm 15 <t<20mm T≧20mm</t<20mm 	±12.5%t ±12.5%t 10%t but max. ±3mm
Weight	Single Length	Special plain-end pipe or A25 pipe Other pipes	+10.0%, -5.0% +10.0%, -3.5%		+10% or -3.5%		+10%/-3.5%
	Carloads	Grade A25, 40,000lb (18144kg) or more Other than Grade A25, 40,000lb (18144kg) or more All grade, less than 40,000lb (18145kg)	-2.5% -1.75% -3.5%				
Straightness		OD≧4 ¹ /₂in. (114.3mm)	max. 0.2% of the length	total deviation local deviation	≦0.15% of whole pipe length <3mm/m		≦0.15%L
Out of Roundness	Diameter, Axis Tolerance	OD>20in. (508.0mm)	±1%	D≦60mm 60 <d≦610mm< td=""><td>included in the diameter tolerance</td><td>Greatest difference in pipe diameter</td><td>±12.5%</td></d≦610mm<>	included in the diameter tolerance	Greatest difference in pipe diameter	±12.5%
	Max. Differential between Min. and Max. Diameter (Applies only to pipe with D/t≤75)	≥20in. (508.0mm) and ≤42in. (1067.0mm) >42in. (1067.0mm)	≦0.500in. (12.7mm) ≤0.625in. (15.9mm)	pipe end; pipe except the 6 610 <d≦1430m end;<="" pipe="" td=""><td></td><td>between pipe ends local out-of-roundness D/t≦75mm pipe end; pipe body</td><td><0.55D but max. 2.5mm 1.0%D but max 7.5mm 1.5%D but max. 15.0mm</td></d≦1430m>		between pipe ends local out-of-roundness D/t≦75mm pipe end; pipe body	<0.55D but max. 2.5mm 1.0%D but max 7.5mm 1.5%D but max. 15.0mm
				pipe except the o	nd; 1.5% but max. 15mm (offshore pipelay: 1%but max 5mm) 2.0% for D/T>75 (offshore pipelay: by agreement)	D/t>75mm pipe end; pipe body	1.5%D but max. 7.5mm 2.0%D but max. 15.0mm
				pipe end; pipe except the e	by agreement 1.5% but max. 15mm (offshore pipelay: 1% but max 5mm) 2.0% for D/T>75 (offshore pipelay: by agreement)		
Pipe End Preparation	Bevel angle Root face Squareness		30°, +5° -0° 1/16in. (1.6mm), ±1/32in. (0.8mm) max.1/16in. (1.6mm)		30°, +5° −0° 1.6mm, ±0.8mm D≦220mm: 1mm D>220mm 0.005D but max. 1.6mm		1.6mm from true 90°
Length					+100mm0mm		purchse order

Note (a) The average diameter (as measured with a diameter tape) of one end of pipe shall not differ by more than 3/32in. (2.4mm) from that of the other end.

For Inquiring and Ordering

All inquiries and orders should contain the following information.

1. Designation

Specification, edition, grade, type and part No. Purchaser's own specification covers requirements not included in the referenced specification, and/or modifies, replaces, (or supersedes) valid specification should be attached to first inquiry and/or given at revision.

2. Specific requirements

- (1) Method of manufacture
 - (Seamless, electric-resistance welded, continuous butt welded, submerged arc welded with straight seam or spiral seam)
- (2) Type of manufacture
- (Hot-finished or cold drawn)
- (3) Type of end finish
 - Square-cut or beveled*
 - (*Special requirements on bevel angle and root face stipulated other than the specification should be mentioned in the inquiry.)
 - Threaded & coupled*
 - (*Requirements different from the specification should be mentioned.)

3. Dimensions

- (1) Outside diameter [O.D] or nominal pipe size [NPS] with abbreviation.
- (2) Wall thickness
 - Nominal or minimum wall thickness, nominal weight or schedule number.
- (3) Length
 - Specific* or random
 - (*In case of specific length, length tolerance should be specified if necessary.)

4. Quantity

Feet, meters or number of lengths

*Delivery allowance should be specified.

5. Inspection

Specify the name of an inspection agent when the inspector representing the purchaser should inspect.

6. Finish and coating

Black, galvanized, polyethylene, mill varnish coating or external and/or internal corrosion protective coating. * (*Consult with us before placing an order, when corrosion protective coating is required.)

7. Marking requirement

When a marking other than that stipulated in the specification is required, give a detailed description of such marking.

8. Packaging requirement

Bundled or loose*

(*Any special packaging should be so instructed if specified other than the specification.)

9. Delivery requirements

Time, place and shipping instructions

10. End use

Commodities to be transported, location, on-land or off-shore, operation pressure and temperature, when available.

11. Consult with us before placing an order or at an inquiry, when any of the following items are required.

- (1) Intermediate grade, wall thickness
- (2) Special and/or supplemental requirements in chemistry
- (3) Special and/or supplemental mechanical properties
- (4) Special or alternative hydrostatic pressure
- (5) Closer tolerance on sizes
- (6) Additional and/or alternative nondestructive inspection
- (7) Any alternative and/or additional conditions

Overseas Offices

JFE Steel Corporation

http://www.jfe-steel.co.jp/en/

TOKYO HEAD OFFICE Hibiya Kokusai Building, 2-3 Uchisaiwaicho 2-chome, Chiyodaku, Tokyo 100-0011, Japan

Phone: (81)3-3597-3111 Fax: (81)3-3597-4860

NEW YORK OFFICE

JFE Steel America, Inc. 600 Third Avenue, 12th Floor, New York, NY 10016, U.S.A. Phone: (1)212-310-9320 Fax: (1)212-308-9292

HOUSTON OFFICE JFE Steel America, Inc., Houston Office

10777 Westheimer, Suite 230, Houston, TX 77042, U.S.A. Phone: (1)713-532-0052 Fax: (1)713-532-0062

BRISBANE OFFICE JFE Steel Australia Resources Pty Ltd.

Level 28, 12 Creek Street, Brisbane, QLD 4000, Australia Phone: (61)7-3229-3855 Fax: (61)7-3229-4377

RIO DE JANEIRO OFFICE JFE Steel do Brasil LTDA / JFE Steel Corporation, Rio de Janeiro Office

Praia de Botafogo, 228 Setor B, Salas 508 & 509, Botafogo, CEP 22250-040, Rio de Janeiro-RJ, Brazil

Fax: (55)21-2553-3430 Phone: (55)21-2553-1132

LONDON OFFICE JFE Steel Europe Limited

15th Floor, The Broadgate Tower, 20 Primrose Street, London EC2A 2EW, U.K.

Phone: (44)20-7426-0166 Fax: (44)20-7247-0168

DUBALOFFICE JFE Steel Corporation, Dubai Office

P.O.Box 261791 LOB19-1208, Jebel Ali Free Zone Dubai, U.A.E.

Phone: (971)4-884-1833 Fax: (971)4-884-1472

NEW DELHI OFFICE JFE Steel India Private Limited

1101, 11th Floor, Unitech's Signature Tower, Tower-A, South City-I, NH-8, Gurgaon, Haryana, 122002, India

Phone: (91)124-426-4981 Fax: (91)124-426-4982

MUMBAI OFFICE JFE Steel India Private Limited Mumbai Office

308, A Wing, 215 Atrium, Andheri - Kurla Road, Andheri (East), Mumbai - 400093, Maharashtra, India

Phone: (91)22-3076-2760 Fax: (91)22-3076-2764

SINGAPORE OFFICE JFE Steel Asia Pte. Ltd.

16 Raffles Quay, No. 15-03, Hong Leong Building, 048581, Singapore

Fax: (65)6224-8357 Phone: (65)6220-1174

BANGKOK OFFICE JFE Steel (Thailand) Ltd.

22nd Floor, Abdulrahim Place 990, Rama IV Road, Bangkok 10500, Thailand

Phone: (66)2-636-1886 Fax: (66)2-636-1891

JFE Steel Vietnam Co., Ltd. VIETNAM OFFICE

Unit 1401, 14th Floor, Kumho Asiana Plaza , 39 Le Duan Street, Dist 1, HCMC, Vietnam Phone : (84)8-3825-8576 Fax : (84)8-3825-8562

Phone: (84)8-3825-8576

JAKARTA OFFICE JFE Steel Corporation, Jakarta Office

6th Floor Summitmas II, JL Jendral Sudirman Kav. 61-62, Jakarta 12190, Indonesia

Phone: (62)21-522-6405 Fax: (62)21-522-6408

MANILA OFFICE JFE Steel Corporation, Manila Office

23rd Floor 6788 Ayala Avenue, Oledan Square, Makati City, Metro Manila, Philippines

Fax: (63)2-886-7315 Phone: (63)2-886-7432

SEOUL OFFICE JFE Steel Korea Corporation

6th Floor, 410, Teheran-ro, Gangnam-gu, Seoul, 135-570, Korea (Geumgang-Tower, Daechi-dong)

Fax : (82)2-3468-4137 Phone: (82)2-3468-4130

BEIJING OFFICE JFE Steel Corporation Beijing

1009 Beijing Fortune Building No.5, Dongsanhuan North Road, Chaoyang District, Beijing, 100004, P.R.China

Phone: (86)10-6590-9051 Fax: (86)10-6590-9056

SHANGHAI OFFICE JFE Consulting (Shanghai) Co., Ltd.

Room 801, Building A, Far East International Plaza, 319 Xianxia Road, Shanghai 200051, P.R.China

Phone: (86)21-6235-1345 Fax: (86)21-6235-1346

GUANGZHOU OFFICE JFE Consulting (Guangzhou) Co., Ltd./ JFE Steel Corporation, Guangzhou Office

Room 3901, Citic Plaza, 233 Tian He North Road, Guangzhou 510613, P.R.China Phone : (86)20-3891-2467 Fax : (86)20-3891-2469

Notice

While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by JFE Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the JFE Steel office for the latest information.