Super Core™
Magnetic Property Curves
JNEX-CORE JNHF-CORE

JFE Steel Corporation
JFE Steel's Super Core™

Magnetic property curves

Typical magnetic property curves for each grade of Super Core™ is shown on the pages listed in the tables below.

Grade Page
10JNEX900 4 5 6 7 8 9 10 11 12 13
10JNHF600 14 15 16 17 18 19 20 21 22 23
20JNHF1300 24 25 26 27 28 29 30 31 32 33

Super Core is a registered trademark or trademark of JFE Steel Corporation in the United States and other countries.
Unit Conversion Factors

Magnetizing Force

<table>
<thead>
<tr>
<th></th>
<th>Oersted</th>
<th>A/m</th>
<th>A/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oersted</td>
<td>1</td>
<td>7.96×10</td>
<td>2.02</td>
</tr>
<tr>
<td>A/m</td>
<td>1.256×10²</td>
<td>1</td>
<td>2.54×10²</td>
</tr>
<tr>
<td>A/in</td>
<td>4.95×10¹</td>
<td>3.94×10</td>
<td>1</td>
</tr>
</tbody>
</table>

Core Loss

<table>
<thead>
<tr>
<th></th>
<th>w/kg</th>
<th>w/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/kg</td>
<td>1</td>
<td>4.54×10⁻¹</td>
</tr>
<tr>
<td>w/lb</td>
<td>2.204</td>
<td>1</td>
</tr>
</tbody>
</table>

Magnetic Flux Density

<table>
<thead>
<tr>
<th></th>
<th>Gauss</th>
<th>Tesla</th>
<th>Line/in²</th>
<th>Wb/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss</td>
<td>1</td>
<td>10⁴</td>
<td>6.45</td>
<td>10⁴</td>
</tr>
<tr>
<td>Tesla</td>
<td>10⁴</td>
<td>1</td>
<td>6.45×10⁴</td>
<td>1</td>
</tr>
<tr>
<td>Line/in²</td>
<td>1.55×10⁻¹</td>
<td>1.55×10⁻⁵</td>
<td>1</td>
<td>1.55×10⁻⁵</td>
</tr>
<tr>
<td>Wb/m²</td>
<td>10⁴</td>
<td>1</td>
<td>6.45×10⁴</td>
<td>1</td>
</tr>
</tbody>
</table>

Magnetic Permeability

<table>
<thead>
<tr>
<th></th>
<th>Gauss/Oe</th>
<th>H/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGS Electro-magnetic Unit</td>
<td>1</td>
<td>1.257×10⁶</td>
</tr>
<tr>
<td>Henry per Meter(H/m)</td>
<td>7.958×10⁶</td>
<td>1</td>
</tr>
</tbody>
</table>

Conversion of Core Loss as per AISA

<table>
<thead>
<tr>
<th></th>
<th>W/kg 60Hz</th>
<th>W/kg 50Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/kg 60Hz</td>
<td>1</td>
<td>0.79</td>
</tr>
<tr>
<td>W/kg 50Hz</td>
<td>1.266</td>
<td>1</td>
</tr>
</tbody>
</table>
High-Frequency Core Loss Curves

10JNEX900 0.10mm

** Measured by**: 25cm Epstein tester
** Test Specimens**: Taken parallel to the rolling direction, used as-sheared
** Assumed density**: 7.49kg/dm3
High-Frequency Magnetization Curves

10JNEX900 0.10mm

- Measured by: 25cm Epstein tester
- Test Specimens: Taken parallel to the rolling direction
- Assumed density: 7.49kg/dm³

![Graph showing magnetic flux density (B) vs. magnetizing force (H) for different frequencies (1 kHz, 5 kHz, 10 kHz, 20 kHz, 30 kHz, 400 Hz)]
High-Frequency Excitation Curves

10JNEX900 0.10mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.49kg/dm³
High-Frequency Exciting Power Curves

10JNEX900

- 0.10mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.49kg/dm³

Specific Exciting Power VA (VA/kg) vs. Magnetic Flux Density B (T)
Core Loss Curves

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10JNEX900</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.49 kg/dm³

50Hz

60Hz

Magnetic Flux Density B (T)

Core Loss W (W/kg)
Magnetization Curve

JNEX900

0.10mm

Test Specimens: Taken parallel to the rolling direction

Assumed density: 7.49kg/dm³

Frequency: 50Hz

Measured by 25cm Epstein tester
Excitation Curve

<table>
<thead>
<tr>
<th>10JNEX900</th>
<th>0.10mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured by</td>
<td>25cm Epstein tester</td>
</tr>
<tr>
<td>Test Specimens</td>
<td>Taken parallel to the rolling direction</td>
</tr>
<tr>
<td>Assumed density</td>
<td>7.49kg/dm³</td>
</tr>
<tr>
<td>Frequency</td>
<td>50Hz</td>
</tr>
</tbody>
</table>

Measured by 25cm Epstein tester, Test Specimens: Taken parallel to the rolling direction, used as-sheared, Assumed density 7.49kg/dm³, Frequency 50Hz.
Exciting Power Curves

10JNEX900 0.10mm

- Measured by: 25cm Epstein tester
- Test Specimens: Taken parallel to the rolling direction
- Assumed density: 7.49kg/dm³
D.C. Magnetization Curve
D.C. Permeability Curve

Measurement Details

- **Material:** 10JNEX900 0.10mm
- **Measurement Method:** 25cm Epstein tester
- **Test Specimens:** Taken parallel to the rolling direction, used as-sheared
- **Assumed Density:** 7.49 kg/dm³
D.C. Hysteresis Loops

10JNEX900 0.10mm

- **Measured by:** 25cm Epstein tester
- **Test Specimens:** Taken parallel to the rolling direction, used as-sheared
- **Assumed density:** 7.49kg/dm³
High-Frequency Core Loss Curves

10JNHF600 0.1mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.53g/cm³
High-Frequency Magnetization Curves

10JNHF600 0.1mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction: used as-sheared
Assumed density: 7.53g/cm³
High-Frequency Excitation Curves

10JNHF600 0.1mm

- Measured by: 25cm Epstein tester
- Test Specimens: Taken parallel to the rolling direction, used as sheared
- Assumed density: 7.53g/cm³
High-Frequency Exciting Power Curves

10JNHF600 0.1mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction; used as-sheared
Assumed density: 7.53g/cm³
Core Loss Curves

10JNHF600

0.1mm Tested by 25cm Epstein tester

Test Specimens: Taken parallel to the rolling direction

Assumed density: 7.53g/cm³

Magnetic Flux Density B (T) Core Loss W (W/kg)
Magnetization Curve

10JNHF-600

0.1mm

Measured by:
25cm Epstein tester

Test Specimens:
Taken parallel to the rolling direction

Assumed density:
7.53g/cm³

Magnetic Flux Density B (T)

Magnetizing Force H (A/m)
Excitation Curve

<table>
<thead>
<tr>
<th>10JNHF600</th>
<th>0.1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured by</td>
<td>25cm Epstein tester</td>
</tr>
<tr>
<td>Test Specimens</td>
<td>Taken parallel to the rolling direction</td>
</tr>
<tr>
<td>Assumed density</td>
<td>7.53g/cm³</td>
</tr>
</tbody>
</table>
Exciting Power Curves

10JNHF600 0.1mm

- Measured by: 25cm Epstein tester
- Test Specimens: Taken parallel to the rolling direction, used as-sheared
- Assumed density: 7.53g/cm³
D.C. Magnetization Curve
D.C. Permeability Curve

<table>
<thead>
<tr>
<th>B-H</th>
<th>H-B</th>
</tr>
</thead>
</table>

10JNHF600 0.1mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.53g/cm³

Magnetic Flux Density B (T)
Magnetizing Force H (A/m)
Permeability μ (emu)
D.C. Hysteresis Loops

10JNHF600 0.1mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction; used as-sheared
Assumed density: 7.53g/cm³
High-Frequency Core Loss Curves

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³
High-Frequency Magnetization Curves

20JNHF1300 0.2mm

Measured by : 25cm Epstein tester
Test Specimens : Taken parallel to the rolling direction
Assumed density : 7.57g/cm³
High-Frequency Excitation Curves

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³
High-Frequency Exciting Power Curves

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³
Core Loss Curves

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³
Excitation Curve

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³
Exciting Power Curves

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³
D.C. Magnetization Curve
D.C. Permeability Curve

20JNHF1300 0.2mm

Measured by: 25cm Epstein tester
Test Specimens: Taken parallel to the rolling direction
Assumed density: 7.57g/cm³

Magnetic Flux Density B (T) vs. Magnetizing Force H (A/m)
Permeability μ (emu) vs. Magnetizing Force H (A/m)
D.C. Hysteresis Loops

Test Specimens: Taken parallel to the rolling direction: used as-sheared
Assumed density: 7.57 g/cm³

Measured by: 25 cm Epstein tester

Magnetic Flux Density B (T)

Magnetizing Force H (A/m)
Notice

While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by JFE Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the JFE Steel office for the latest information.

Copyright © JFE Steel Corporation. All Rights Reserved.

Any reproduction, modification, translation, distribution, transmission, uploading of the contents of the document, in whole or in part, is strictly prohibited.