

Environmental Vision 2050

JFE Steel Carbon Neutrality Strategy Briefing 2023

November 8, 2023 JFE Steel Corporation

Copyright © 2023 JFE Steel Corporation. All Rights Reserved.

CONTENTS

1 Carbon Neutrality Plan (Transition Period)

16

18

•	The Steel Sector is the Largest CO ₂ Emitter	4
•	Milestones of Japanese Steel Industry	5
•	Project Supported by the Green Innovation Fund	6
•	Multitrack Approach to Technology for Carbon Neutrality	7
•	JFE Steel's Transition: Direction and Challenges	8
•	Concept of 2027 Transition in Kurashiki	9
•	Large, High-efficiency EAF in Kurashiki:	10
	Investment Overview	
•	Large, High-efficiency EAF in Kurashiki:	11
	Innovation	
•	Progress on the Emirates Project	12

 Progress on the CO₂ Emissions Reduction Plan 13

2 Carbon Neutrality Plan (Innovation Period)

- JFE Steel's Transition: Direction and Challenges 15
- Necessity of Developing an Ultra-innovative Blast **Furnace Process**
- Necessity and Initiatives of CCUS
- Initiatives for Hydrogen Procurement 19

 Necessity of Green Steel During the Transition Peri 	od 21
 Strategy to Stimulate Demand for Green Steel 	22
 Contributing to CO₂ Reduction Through Green Steel JGreener 	eX™ 23
 Adoption of JGreeX™: Achievements 	24
 Business Growth Strategy Through the Supply of 	25
Green Steel	10000000000000000000000000000000000000
 Contributing to CO₂ Reduction by Expanding Electri 	cal 26
Steel Sheet Production Capacity	20
 Contributing to CO₂ Reduction Through Large and 	27
Heavy Steel Plates for Offshore Wind Power	21

4 CO₂ Reduction Through Efficient Use of Resources

- · Contributing to a Recycling-based Society by Recycling 29 **Plastic Waste**
- Contributing to Biodiversity Through Steel Slag Products 30

5 East Japan Works (Keihin District) Land Use Scheme

•	JFE-Gr Land Use Scheme: "OHGISHIMA 2050"	32
•	Carbon Neutrality Business in OHGISHIMA 2050	33

6 Collaborating with Society on Carbon Neutrality

Collaborating with Society on Carbon Neutrality

35

Carbon Neutrality Plan (Transition Period)

- The Steel Sector is the Largest CO₂ Emitter
- Milestones of Japanese Steel Industry •

1111110000000000

11111000000

11111110000 1111111110000

111111100000 1111000000

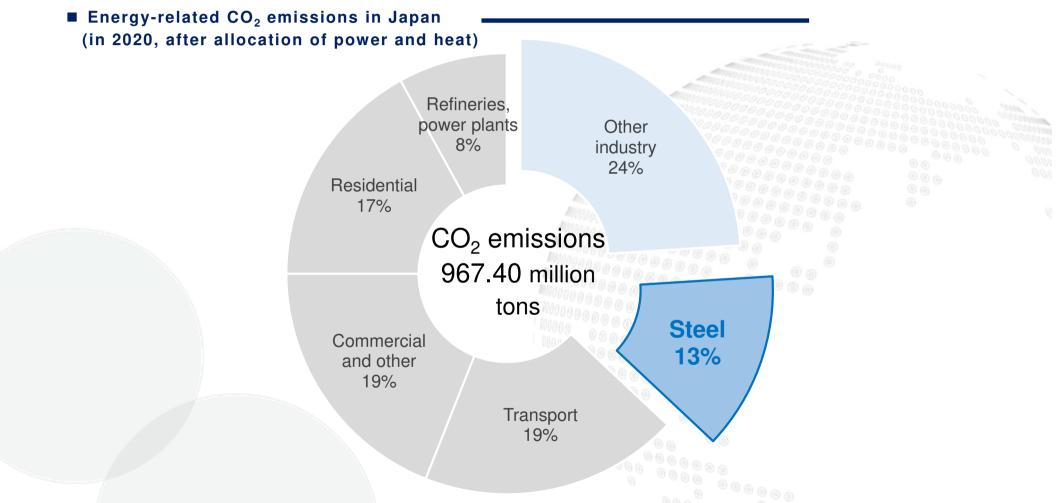
000 0.0

000

000

000000

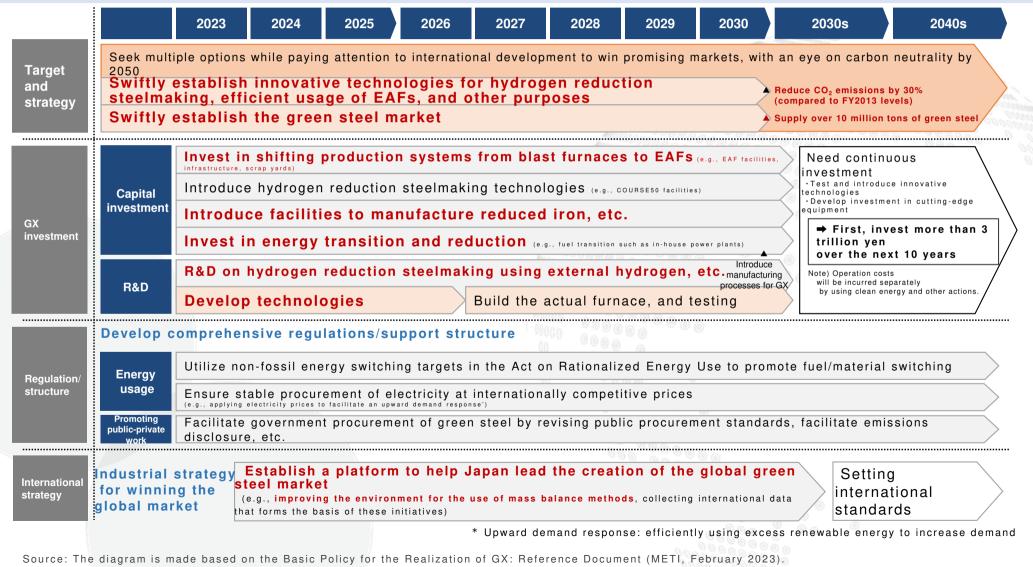
1111000000000


000000000

- Projects Supported by the Green Innovation Fund ٠
- Multitrack Approach to Technology for Carbon Neutrality .
- JFE Steel's Transition: Direction and Challenges
- Concept of 2027 Transition in Kurashiki
 - Large, High-efficiency EAF in Kurashiki: Investment Overview
 - Large, High-efficiency EAF in Kurashiki: Innovation
 - Progress on the Emirates Project
 - Progress on the CO₂ Emissions Reduction Plan

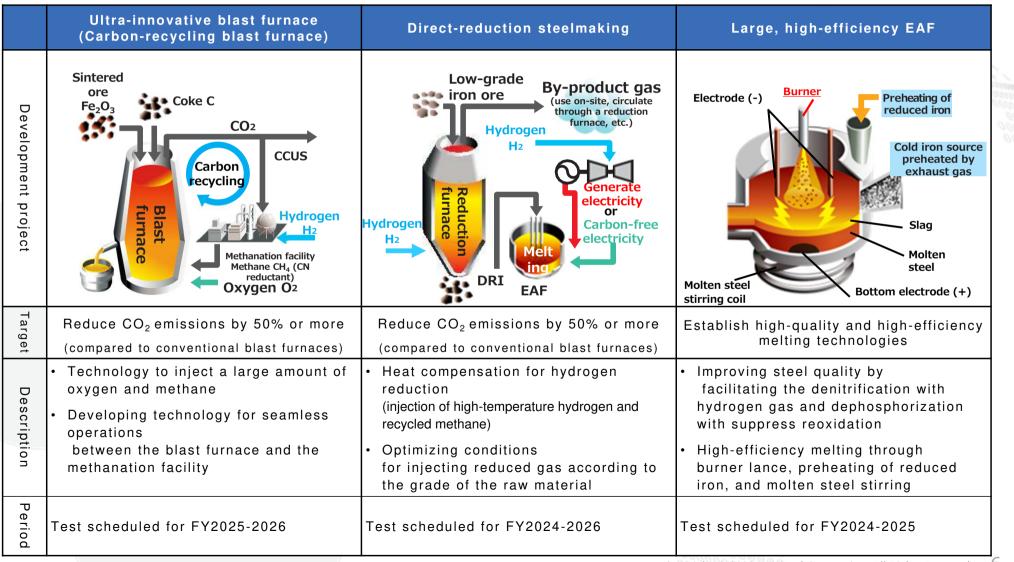
The Steel Sector is the Largest CO₂ Emitter

The steel industry is a large CO₂ emitter, accounting for 13% of the national total in Japan, and is a key industry for achieving carbon neutrality nationwide.


Values after emissions associated with power generation by electricity businesses are allocated to end customers according to electricity consumption. Machinery includes the manufacture of fabricated metal products. The manufacture of chemical and allied products includes petroleum and coal products. Based on the Ministry of the Environment, Japan's National Greenhouse Gas Emissions Data (FY1990 to FY2020) (final figures).

Source: The Japan Iron and Steel Federation website. (in Japanese) (https://www.carbon-neutral-steel.com/about/)

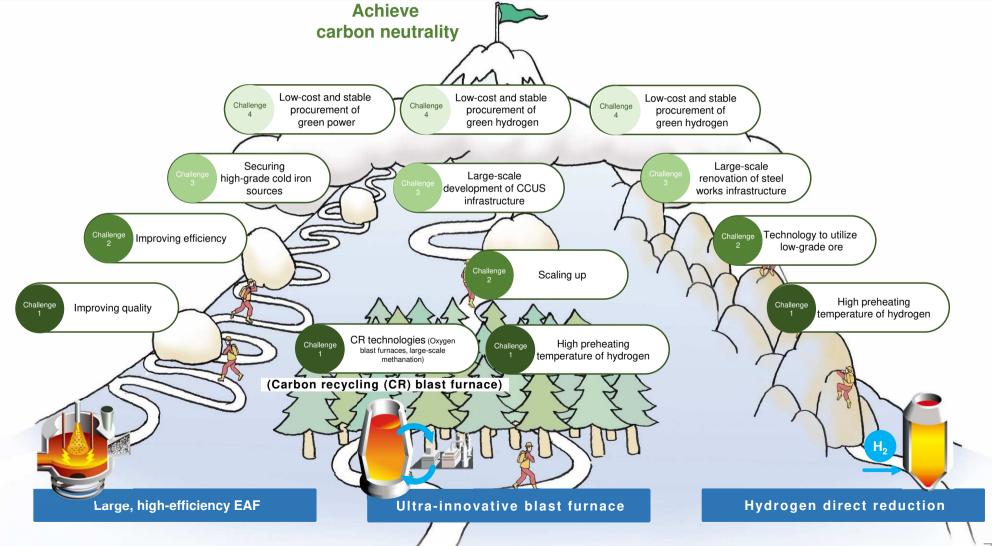
Aiming for carbon neutrality by 2050, the industry strives to build a system to supply 10 million tons of green steel by 2030, as stated in the government's goals. To this end, it has been discussing investment in radical transition while assuming government support.


(https://www.meti.go.jp/press/2022/02/20230210002/20230210002.html)

Copyright © 2023 JFE Steel Corporation. All Rights Reserved. 5

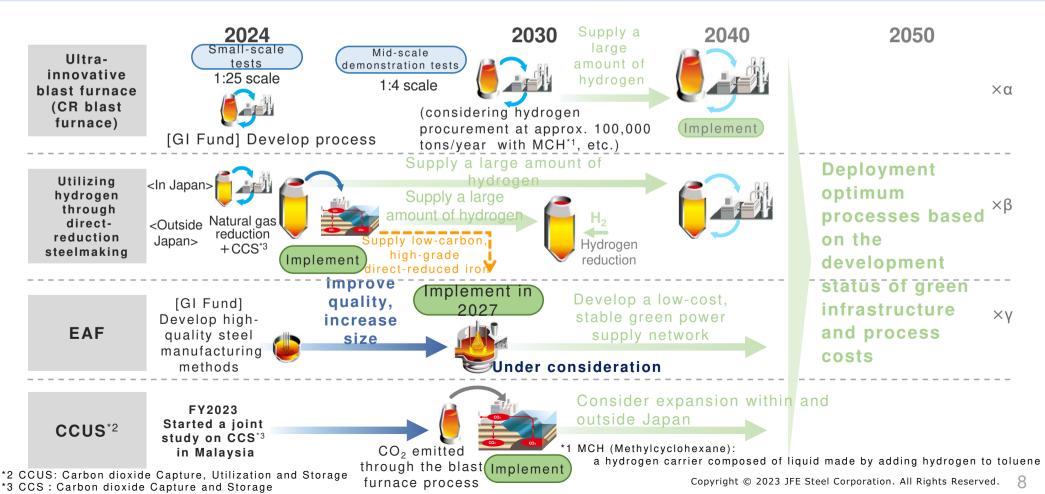
Projects Supported by the Green Innovation Fund Vision 2050

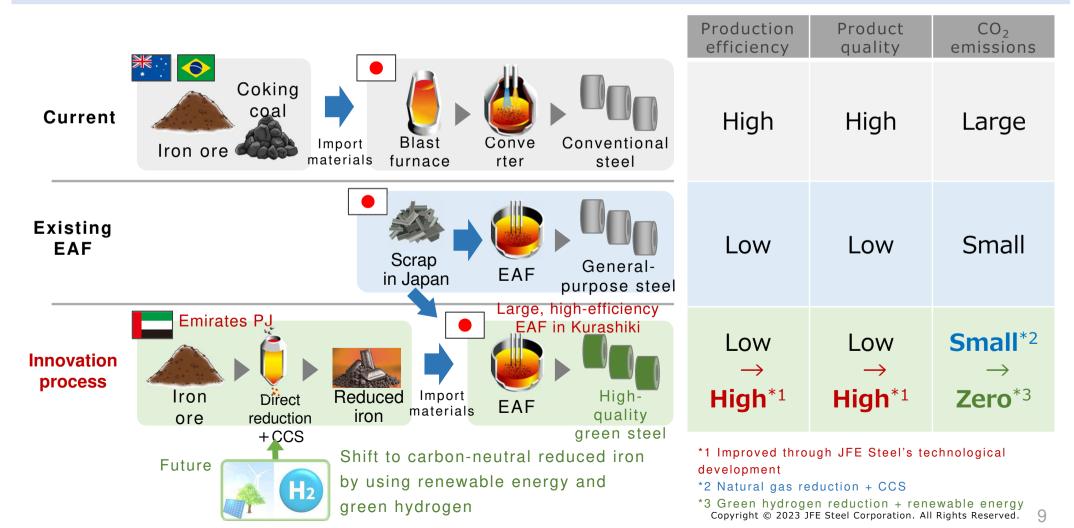
- Promoting the development of ultra-innovative technologies in the NEDO project on hydrogen utilization in iron and steelmaking processes, financed by the Green Innovation (GI) Fund.
- Started building a small test blast furnace (150m³) in Chiba District, aiming for swift implementation.



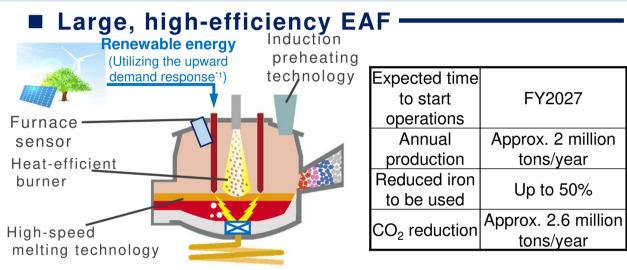
Multitrack Approach to Technology for Carbon Neutrality

JFF

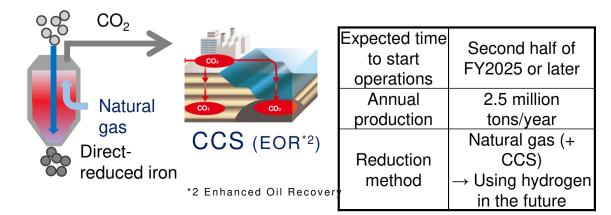

- A variety of technical paths and numerous challenges exist along the way to reaching carbon neutrality (summit) by 2050.
- Since the fastest way to the summit is yet to be found, a multitrack approach is essential in driving technological development.
- Moreover, government support and collaboration with society are critical, considering the difficulties in achieving the goal at an individual company level.

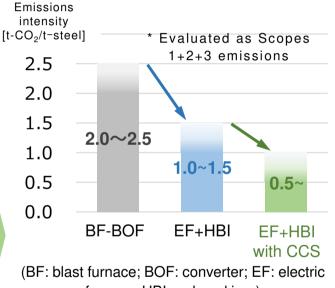

- Developing technologies to produce high-quality and high-functional steel in the GI Fund project by using technologies to utilize hydrogen in the blast furnace process and direct-reduction steelmaking as well as EAFs.
- Considering the transition of one blast furnace, which is to be refurbished in 2027, to a large, high-efficiency EAF, assuming government support. Aiming for lower CO₂ emissions and business growth.
- Policies on the transition after 2030 will be formulated later, taking account of issues such as the development of plentiful, low-cost, and stable supply networks of hydrogen and power as well as demand for green steel.

- Production efficiency and product quality are major challenges in the transition from blast furnaces to EAFs.
- Aiming for the large-scale supply of green, high-quality, and high-functional steel by overcoming challenges in the large-scale high-efficiency EAF (innovative EAF) under consideration.
- Direct-reduction iron is essential in producing high-quality steel in EAFs. Planning to procure iron sources from the Middle East, which is a suitable location for solar power generation, CCS, and green hydrogen production.



Large, High-efficiency EAF in Kurashiki: Investment Overview

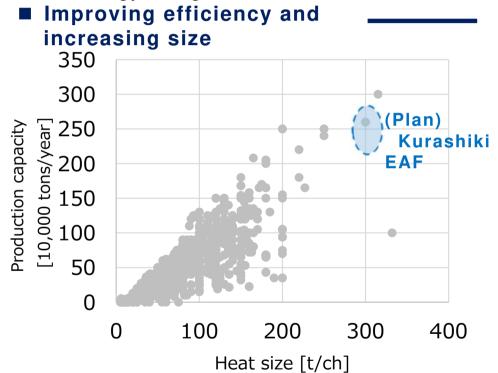



- The Kurashiki EAF applies innovative technologies being developed in the GI Fund project such as high-quality and high-efficiency melting technology, as well as technology uniquely developed by JFE Steel.
- By introducing these technologies and utilizing Green Ferrous Material, the company will be the first to build a large-scale supply system for green, high-quality and high-functional steel comparable to that produced through the blast furnace process, which has been extremely difficult to achieve in existing large EAFs.

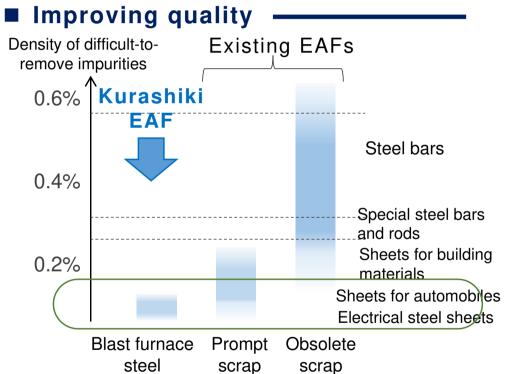
*1 Upward demand response: efficiently using excess renewable energy to increase demand

UAE project on direct-reduced iron

furnace; HBI: reduced iron)


Ultra-innovative EAF + Green Ferrous Material

Produce green, high-quality steel comparable to that produced through the blast furnace process



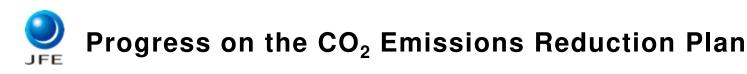
- Achieving production efficiency comparable to that of the blast furnace process by introducing one of the largest EAFs in the world and applying high-efficiency melting technology currently being developed.
- Also aiming to produce high-quality and high-functional steel that has been impossible for existing EAFs to produce, such as electrical steel sheets and high tensile steel sheets, not only through JFE Steel's accumulated refining technology but also through the development of quality-improving technology using the GI Fund.

Establish high-efficiency melting technology through innovative processes, including heat-efficient burners, molten steel stirring coils, and induction preheating.

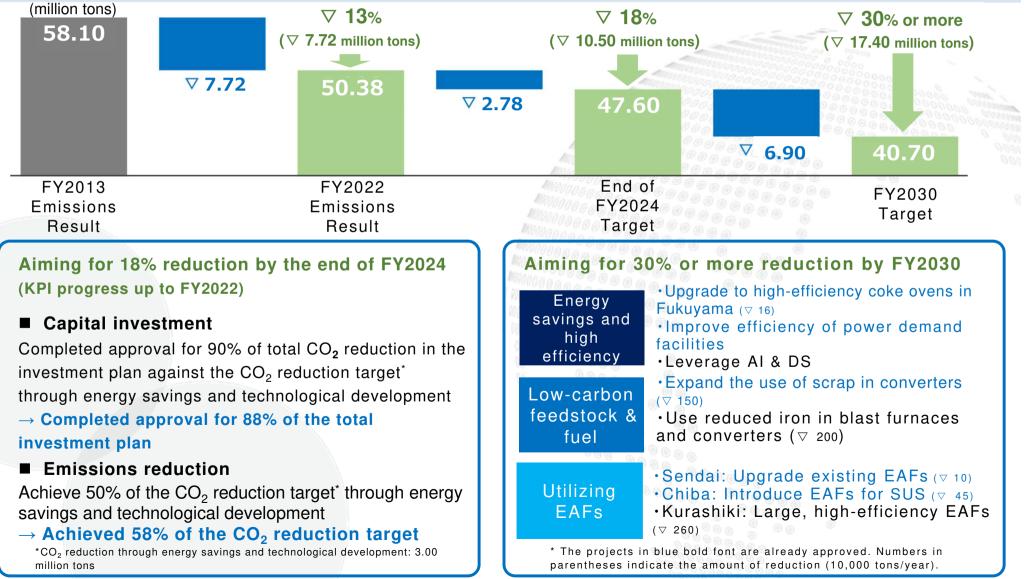
Source: German Steel Association's database on world steel companies (2018 edition), edited by JFE Steel.

Establish technologies to reduce the impact of impurities contained in scrap (tramp elements) and to achieve levels of phosphorus and nitrogen comparable to the blast furnace process.

Source: Jones, A.J.T., Assessment of the Impact of Rising Levels of Residuals in Scrap, Proceedings of the Iron & Steel Technology Conference (2019), edited by JFE Steel.


- An agreement was signed on July 17, 2023, stating that Abu Dhabi Ports Group (ADPG) will participate fully in project^{*}-related port development and operations, land leasing and services, and infrastructure development.
- Collaboration with ADPG will provide the undertaking with access to a suitable site for building a distribution & logistics system capable of stably importing raw materials and shipping products for the envisioned supply chain of Green Ferrous Material.

*On September 1, 2022, JFE Steel signed an agreement with Itochu Corporation and Emirates Steel Arkan to jointly conduct detailed feasibility studies on the establishment of a supply chain for the Ferrous Raw Material for Green Ironmaking with Low-carbon Emissions (Green Ferrous Material) at the project site in Abu Dhabi.



On July 17, 2023 MOU exchange ceremony held during the Japan-UAE Business Forum in Abu Dhabi, UAE, in the presence of Prime Minister Fumio Kishida

- Moving forward according to the FY2022 plan, achieving a 13% reduction. Also expecting to achieve the FY2024 year end target.
- Making solid progress in investment approval and implementation to achieve the reduction targets. Already approved for approx. 110 billion yen by FY2022.

Carbon Neutrality Plan (Innovation Period)

000000

••••••

100000000

111111000000

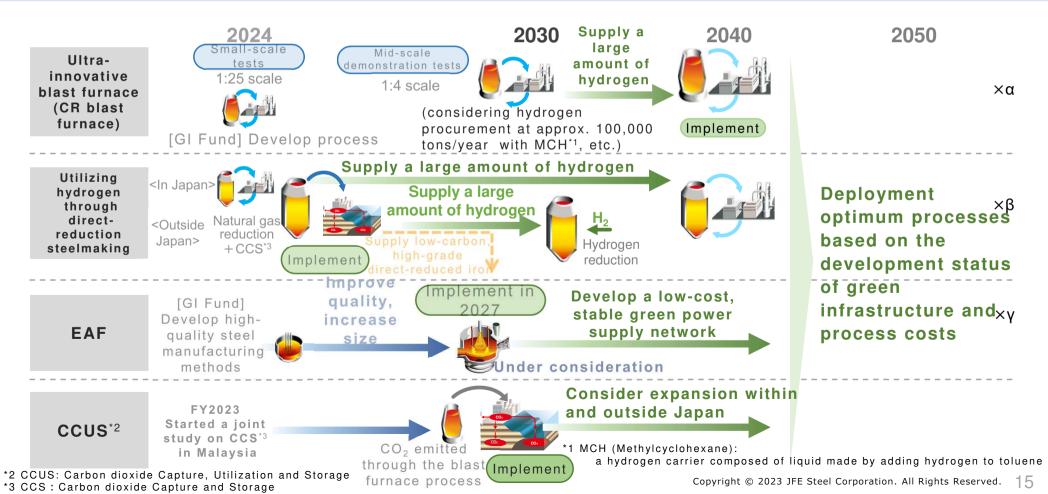
1111000000

.....

.....

000

....

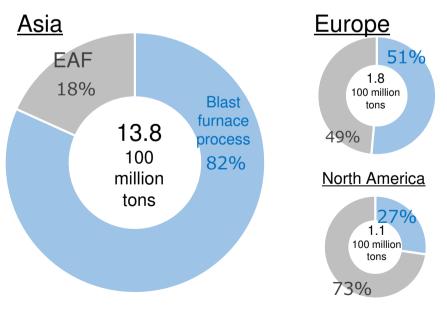

00000 00 000 000

- JFE Steel's Transition: Direction and Challenges
- Necessity of Developing an Ultra-innovative Blast **Furnace Process**
- Necessity and Initiatives of CCUS
- Initiatives for Hydrogen Procurement

- Developing technologies to produce high-quality and high-functional steel in the GI Fund project by using technologies to utilize hydrogen in the blast furnace process and direct-reduction steelmaking as well as EAFs.
- Considering the transition of one blast furnace, which is to be refurbished in 2027, to a large, high-efficiency EAF, assuming government support. Aiming for lower CO₂ emissions and business growth.
- Policies on the transition after 2030 will be formulated later, taking account of issues such as the development of plentiful, low-cost, and stable supply networks of hydrogen and power as well as demand for green steel.

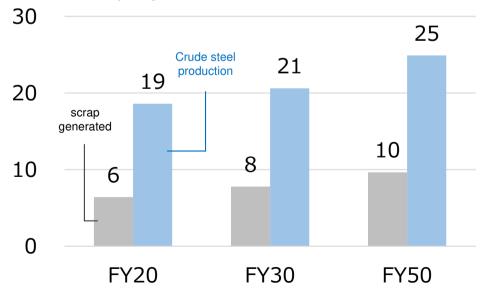
- The blast furnace process is an extremely efficient ecosystem, effectively using all the byproduct gas (energy) generated in the production process to heat steel and generate power.
- Transitioning all processes, for example to direct-reduction steelmaking, will require the complete renewal of facilities for upstream processes, which account for approximately 50% of steel works, while also reducing the generation of by-product gas, making it difficult to rebuild an efficient ecosystem.
- In order to utilize existing business resources, technological development of the ultrainnovative blast furnace process is also an important approach, aiming to reduce emissions to the extent possible.

 * The numbers in the diagram indicate the CO_2 emissions intensity (t- CO_2 /t) in each process.



- Of the 1.9 billion tons of crude steel produced around the world, approximately 72% is supplied through the blast furnace process, mainly in Asia.
- Steel demand is expected to continue growing along with economic growth and population growth, and scrap alone will not be sufficient to meet the demand.
- In order to fulfill the responsibility to supply a large amount of high-quality and high-functional steel, it is important to utilize existing business resources and maintain the ultra-innovative blast furnace process, aiming to reduce emissions to the extent possible.

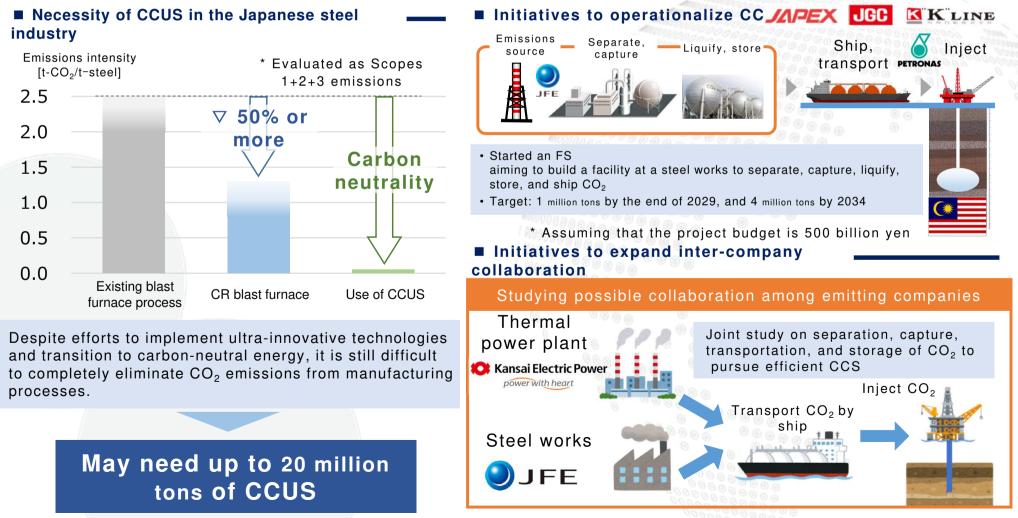
Crude steel production by process


✓ Development of ultra-innovative blast furnace technology can also make a significant contribution to reducing emissions in Asia, where blast furnaces dominate.

Source: Data in 2023 World Steel Figures, edited by JFE Steel.

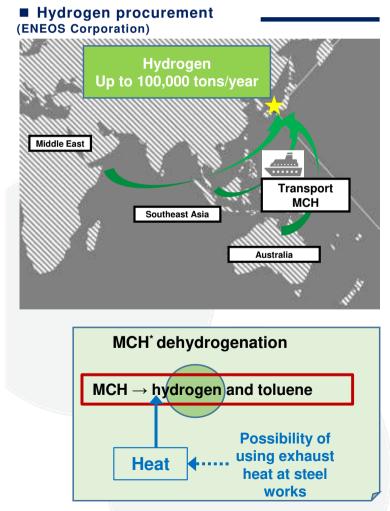
Projected global crude steel production and scrap generated

- ✓ The amount of scrap generated is approximately 1/3 of crude steel production.
- ✓ Crude steel production from iron ore will be necessary in the future as well.

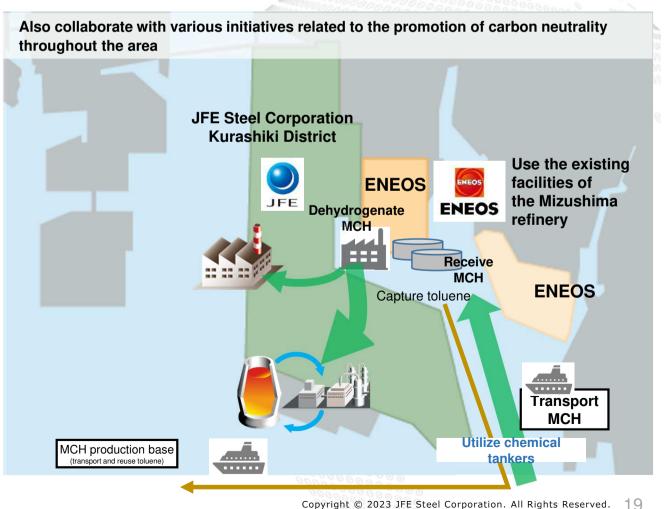

Source: Global Trends in Demand for Steel Scrap (2021, The Japan Ferrous Raw Materials Association) and Iron and Steel Technology Roadmap (2020;IEA), edited by JFE Steel.

[100 million tons/year]

- Carbon-recycling blast furnaces aim to reduce CO₂ by 50% or more, and achieving carbon neutrality requires the use of CCUS^{*}.
- Started joint evaluation on the establishment of a CCS value chain originated from Japan, aligned with the CCS study in Malaysia
- Accelerating discussions aiming to expand inter-company collaboration within and outside Japan, in addition to this project



* CCUS : Carbon dioxide Capture, Utilization and Storage



- Taking advantage of the location of the Mizushima Complex, West Japan Works (Kurashiki District) and ENEOS Corporation, which is situated adjacent, have started a joint study on hydrogen utilization, aiming to build a hydrogen supply chain by 2030. (up to approx. 100,000 t-H₂/year)
- ▶ Using for a mid-scale CR blast furnace demonstration and for fuel decarbonization.

* MCH (Methylcyclohexane): a hydrogen carrier composed of liquid made by adding hydrogen to toluene

Hydrogen utilization at the Mizushima Complex

CO₂ Reduction **Fhrough Steel Products**

11111110000000000000000

000000

111111000000

111111000000 11111000000 1111000000

..........

.....

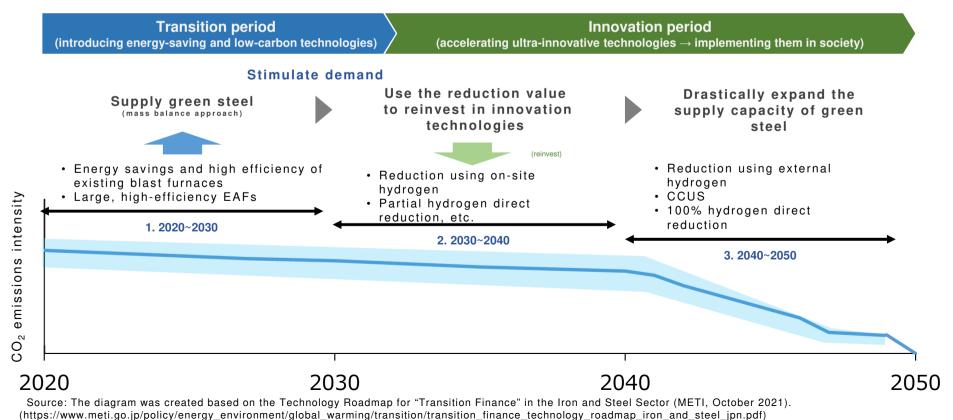
....

0000

00000 00

000 000

000


000

- Necessity of Green Steel During the Transition Period
- Strategy to Stimulate Demand for Green Steel
- Contributing to CO₂ Reduction Through Green Steel JGreeX™ ٠
- Adoption of JGreeX[™]: Achievements ٠
- Business Growth Strategy through the Supply of Green Steel ٠
- Contributing to CO₂ Reduction by Expanding Electrical Steel **Sheet Production Capacity**
 - Contributing to CO₂ Reduction through Large and Heavy Steel
 - Plates for Offshore Wind Power

Necessity of Green Steel During the Transition Period

- It takes time and money to establish ultra-innovative steel processing technologies aiming for zero emissions as well as to develop social infrastructure such as green hydrogen and power. Meanwhile, the steel industry, as the largest emitter, needs to continue making the utmost efforts to reduce emissions.
- Proper evaluation needs to be conducted on the (environmental) value of the actual emissions reduction using energy-saving and low-carbon technologies during the transition period.
- In order to meet demand for green steel in the transition period, it is essential that the mass balance approach is applied, allocating CO₂ emissions reduction to any steel products.
 - Reducing the CO₂ emissions intensity of steel products: image

- Actively implementing activities for standardization and development of business models in order to stimulate demand for green steel.
- Initiatives for setting international standards
 - ✓ Proposal at Worldsteel

Effectiveness and necessity of setting international standards for emissions calculation methods and adopting the mass balance approach (April and October 2023)

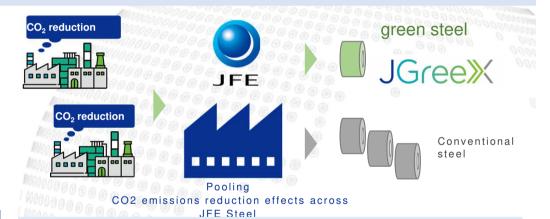
 Agreement at the G7 Ministers' Meeting on Climate, Energy and Environment Started working on implementation of the new Global Data Collection Framework related to the GHG emissions of steel products (April 2023)

Initiatives for formulating industrial rules

- Collaboration between the JISF and three blast furnace companies Formulated green steel guidelines applying the mass balance approach (September 2022) Formulated detailed green steel guidelines aiming to promote the mass balance approach (October 2023)
- Participation in the GX League
 Publishing recommendations on adding value to green products (scheduled for November 2023)

Initiatives as an individual company

- ✓ <u>Starting supply of JGreeX[™]</u>
 Started supplying green steel, applying the mass balance approach (September 2023)
- ✓ <u>Development of a model to share CO₂-reduction costs throughout society</u> Became the first in the world to develop a model to broadly share CO₂-reduction costs across the supply chain (June 2023)


- Started supplying green steel JGreeX[™], which emits significantly less CO₂ than conventional products, in 1H of FY2023.
- ► The steel mass balance approach is applied to JGreeXTM to calculate CO₂ intensity and reduction level of steel product based on ISO standard, ensuring additionality and transparency with third-party certifications.
- Overview of green steel JGreeXTM

JGreeX (JFE + Green + GX)

Supply start	First half of FY2023
Supply capacity	Approx. 200,000 tons (FY2023)
Target products	All steel products produced by JFE Steel
Certification body	Nippon Kaiji Kyokai (ClassNK)

Overview of the steel mass balance approach

STEP.1

Calculate the emissions intensity of any steel product to apply this approach

STEP.2

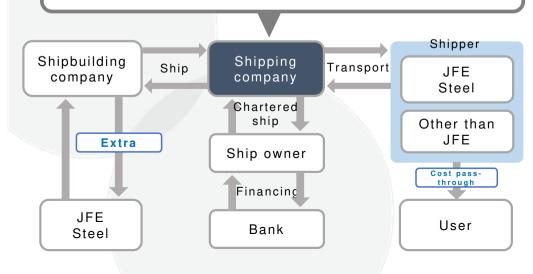
Identify emissions reduction projects and determine their emissions reduction levels

STEP.3

Issue a reduction certificate based on the determined reduction level, grant the certificate, and supply steel materials.

% In addition to blast furnace companies in Japan, ArcelorMittal, Thyssenkrupp, and POSCO have also developed products as green steel brands based on the mass balance approach, and started selling them in some areas.

- With recognition of the value of green steel JGreeX[™] in reducing CO₂, the products have been adopted in ships (14,000 tons), buildings (200 tons), and grain-oriented electrical steel sheets for transformers manufactured in Europe (300 tons).
- Became the first in the world to develop a model to broadly share CO₂-reduction costs across the supply chain, while also contributing to consumers' Scope 3 emissions reduction.


■ Developing a model to share CO₂-reduction costs throughout society

- Became the first in the world, together with eight Japanese shipping companies, to develop a model to broadly share CO₂-reduction costs across the supply chain
- Sales volume: 14,000 tons

NYK Bulk & Projects Carriers, Ltd.,

MOL Drybulk Ltd., Toko Kaiun Kaisha, Ltd.,

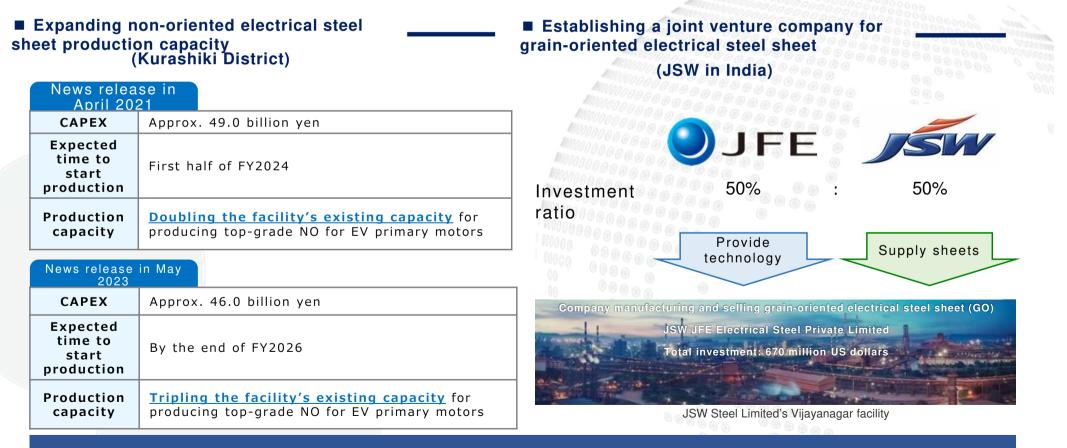
Kawasaki Kisen Kaisha, Ltd., Kawasaki Kinkai Kisen Kaisha, Ltd., Daiichi Chuo Kisen Kaisha, Ltd., Daiichi Chuo Kinkai Kaisha, Ltd., and Eastern Car Liner, Ltd.

- Contributing to reducing the lifecycle carbon footprint of buildings
 - Contributing to CO₂ reduction in manufacturing materials for new buildings
 - Sales volume: 200 tons

(tentative name) Suidobashi PREX Project

	VIII INA
Operator	Sumitomo Corporation
Designer and executor	Kumagai Gumi Co., Ltd. (scheduled)
Building structure	Steel structure, 10 floors above ground

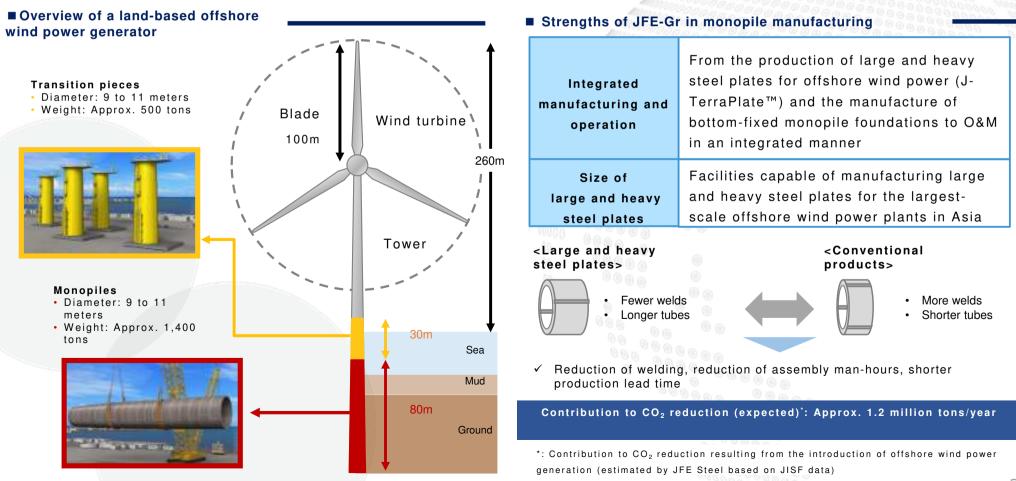
- Increasing the mix of highly value-added products such as high tensile steel sheets and electrical steel sheets to 50+%, shifting the focus from Quantity to Quality, and aiming for business growth by shifting from high-quality steel to green steel.
- Expanding the supply capacity of green steel is critical for maintaining and expanding the international competitiveness of not only the domestic steel industry but also consumer industries, including automobiles and electronics.



Contributing to CO₂ Reduction by Expanding Electrical Steel Sheet Production Capacity

- Contributing to CO₂ reduction by increasing the production of top-grade non-oriented electrical steel sheets (NO) used for primary motors of EVs and HEVs that are growing in demand globally.
- JSW and JFE Steel have jointly established a new company, JSW JFE Electrical Steel Private Limited, to manufacture and sell grain-oriented electrical steel sheet (GO). It is the first in India to manufacture high-grade GO in an integrated manner, contributing to greener energy network enhancement projects.

Contribution to CO₂ reduction (total)^{*}: Approx. 4.8 million tons/year


Contribution to CO, reduction resulting from an increase in EVe (estimated by JFE Steel) and from transmission replacement (estimated by JFE Steel)

Contributing to CO₂ Reduction through Large and Heavy Steel Plates for Offshore Wind Power

- The Japanese government has positioned offshore wind power generation as a key factor for carbon neutrality.
- J-TerraPlate[™], a large and heavy steel plate produced and supplied by JFE Steel, has been selected for the first time for the production of bottom-fixed monopile foundations for offshore wind power generators.
- The JFE Group (JFE- Gr) will continue its groupwide efforts to promote the expansion of green energy, aiming to contribute to the decarbonization of society as a whole.

CO₂ Reduction Through Efficient Use of Resources

111111100000000000000000

0000

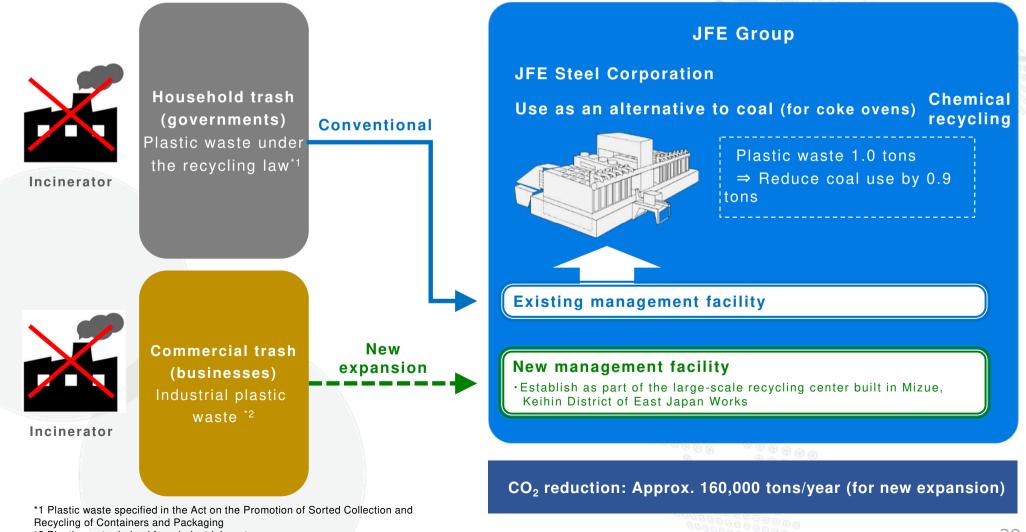
111111000000 1111111100000

1111000000 *********

>

.....

000 0.0

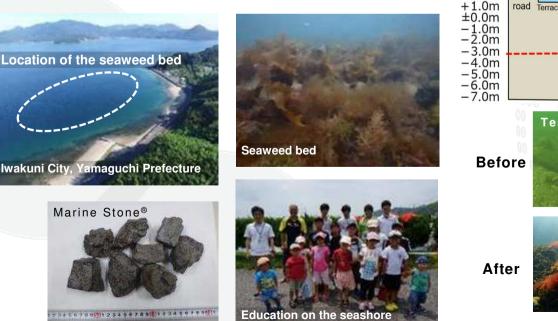

- Contributing to a Recycling-based Society by Recycling Plastic Waste
- Contributing to Biodiversity Through
 - **Steel Slag Products**

Copyright © 2023 JFE Steel Corporation. All Rights Reserved. 29

*1 Plastic waste specified in the Act on the Promotion of Sorted Collection and Recycling of Containers and Packaging *2 Plastic waste derived from industrial waste

Contributing to a Recycling-based Society by Environmental Vision 2050 **Recycling Plastic Waste** JFE

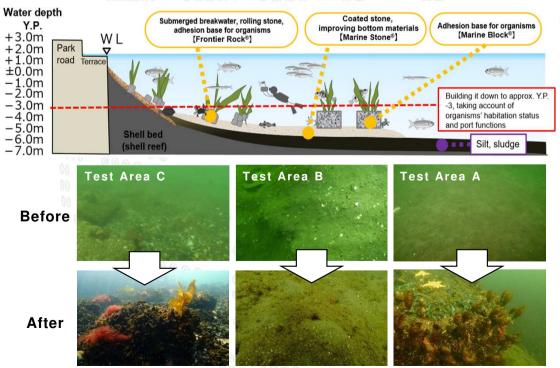
- \blacktriangleright The steel industry is promoting reductions in CO₂ emissions by recycling waste plastic, which is normally incinerated.
- In addition to conventional domestic plastic waste under the recycling law^{*1}, JFE has also started utilizing industrial plastic waste^{*2}, accelerating its efforts by increasing the types of plastic waste and the amount of alternative utilization.



Contributing to Biodiversity Through Steel Slag Products

- Environmental Vision 2050
- Created a seaweed bed in Shinto, Iwakuni City, Yamaguchi Prefecture, by utilizing Marine Stone[®], a steel slag product for marine areas.
- Obtained J Blue Credit^{®*1} certification for approximately 80 tons of CO₂ captured by blue carbon^{*2}.
- Promoting contribution to the preservation of biodiversity by utilizing steel slag products that are helpful for the recycling-based society.

*1: Established by the Japan Blue Economy Association (JBE) in 2020. It is a credit system certified, issued, and managed by the JBE through an independent committee review. *2: Carbon captured by marine ecosystems, such as marine plants and seaweed beds. It is a new term coined by the UNEP in October 2009 as a new carbon sink.


- Obtaining J Blue Credit[®] certification
 Creation of a seaweed bed in Shinto, Iwakuni City
 - Used Marine Stone[®] to create and expand a base for the growth of a rocky reef seaweed bed
 - Utilizing it for education and research. Confirmed the co-benefits of seaweed bed creation, including fish attraction.

Initiatives in Tokyo Bay

© Collaboration with Yokohama City to enrich the ocean

• Collaborating with Yokohama City to promote the improvement of marine habitats by using steel slag products

Confirmed improvement in marine habitats through the use of steel slag products

East Japan Works(Keihin District) 111100000000000 Land Use Scheme

.

000000

•••••

111111000000

> 0000

....

000 0.0

11110000

1110000

- JFE-Gr Land Use Scheme: "OHGISHIMA 2050"
- Carbon Neutrality Business in OHGISHIMA 2050

- Developed OHGISHIMA 2050 as the land use scheme of East Japan Works (Keihin District) after the suspension of its upstream process, including blast furnaces, along with implementation of structural reform to build the optimum production system in Japan.
- Contributing to the sustainable development of local communities and society by creating new industries and employment for the next 100 years, realized through the creation of a field to take on new challenges to achieve carbon neutrality and innovation.

Concept of land use

* Details of OHGISHIMA 2050 (in Japanese) https://www.jfe-holdings.co.jp/release/2023/09/pdf/230907.pdf

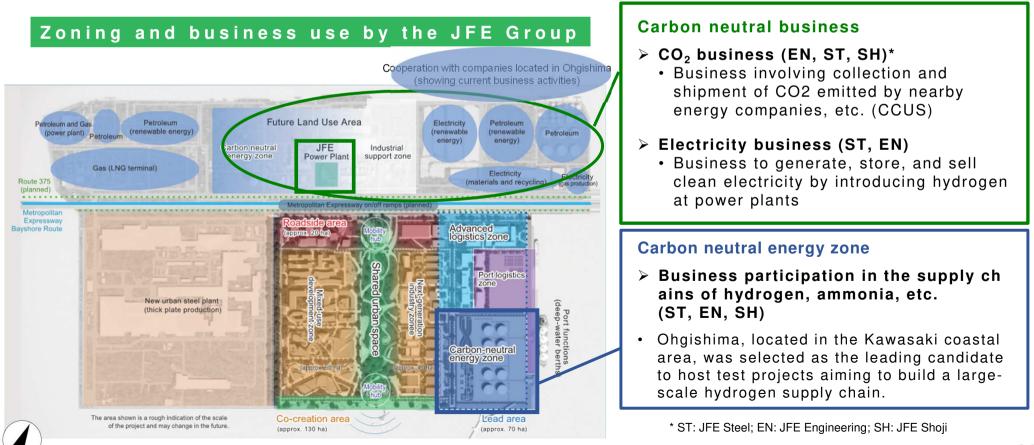
Aim to solve the country's key issues and help sustainable development of the Keihin coastal area

 The city leading Japan's carbon neutrality (forming a supply base for next-generation energy, including hydrogen)
 The city of innovation helping nurture next-generation industries (promoting the implementation of future technologies in society)
 The city of resilience helping disaster prevention in the metropolition tan area (Contribution that takes advantage of convenient access)
 Carbon-neutral developments leading Green Transformation

in Japan

innovation leading the creating of the society of the future

Resilient infrastructure supporting Greater Tokyo area's disaster prevention and management



(Ohgishima District in 2050: perspective drawing)

- The lead area will utilize deep water berths to form a hydrogen supply base, leading to carbon neutrality and land use conversion for the entire area.
- In another area, a shared urban space with abundant greenery will be created as a central axis, equipped with the latest infrastructure supporting DX and GX. On both sides of the space, the next-generation industry zone and the integrated development zone will be created, aiming to build up next-generation industries and facilities.
- Considering new carbon neutral businesses across the group

Collaborating with Society O on Carbon Neutrality

.

11111110000000000000000

000000

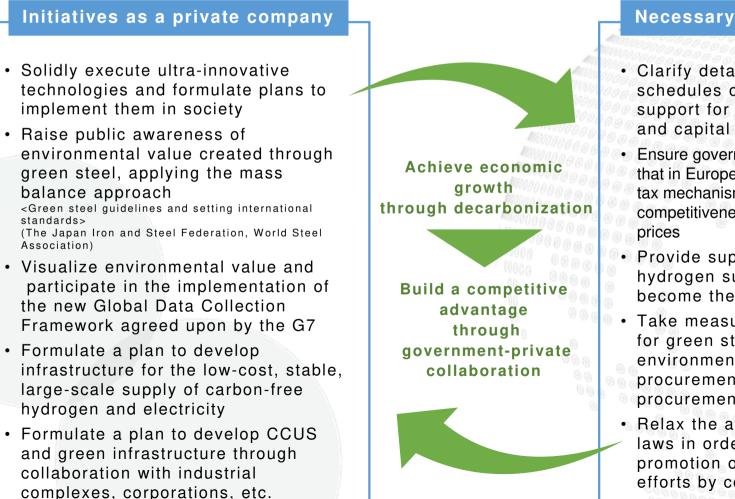
....

1111100000

1100000

11110000

.......


.....

> 000 0.0 000

Collaborating with Society on Carbon Neutrality

- While achieving carbon neutrality is a top management priority for JFE Steel, generating environmental value involves large investments and cost increases associated with transitioning, requiring efforts beyond the private company level.
- Mechanisms are needed so that society, as the beneficiary of green steel, helps to cover the associated cost increases through government support, collaborative initiatives, etc.

Necessary government support

- Clarify detailed frameworks and schedules on long-term government support for large-scale R&D costs and capital investments
- Ensure government support comparable to that in Europe and the US (e.g., subsidies, tax mechanisms) and international competitiveness of industrial electricity prices
- Provide support for building a green hydrogen supply chain that will become the new infrastructure
- Take measures to stimulate demand for green steel, which has high environmental value, through procurement support (e.g., public procurement)
- Relax the application of competition laws in order to not hinder the promotion of innovation and joint efforts by companies

This document is not a disclosure document under the Financial Instruments and Exchange Act, and we do not guarantee the accuracy or completeness of the information. In addition, the projections and other information presented are based on information available at the time of the presentation and contain uncertainties. Therefore, please refrain from making investment decisions based solely on this material. The Company assumes no responsibility whatsoever for any losses incurred as a result of using this material.