船殻外板自動溶接プロセス

Automatic Welding Process for Ship's Shell Plates

西	泰彦	エンジニアリング研究所 生産技術研究部 主査	Yasuhiko Nishi
佐野	孝信	エンジニアリング研究所 生産技術研究部	Takanobu Sano
水谷	和時	津製作所 船殻プロセス部 船殻プロセス室 室長	Kazutoki Mizutani
上野	充由	津製作所 船殻プロセス部 船殻プロセス室 主査	Atsuyoshi Ueno

船殻ブロック同士の突き合わせ溶接を上向き姿勢ワンラン施工にて完了することのできる新溶接法を開発 した。この新溶接プロセスにおけるビード形成モデルの構築とその数値解析を通し,実適用での安定施工 と溶接部の健全化を達成した。

Quite new automatic arc welding process and equipment have been developed that can weld ship's shell plates, upwards from the ground. The welding equipment can complete a butt joint of ship's shell plates with one running process. In order to keep the welding process under control, it is important to know formation mechanism of the weld bead in this process. A control system based on a weld bead formation model has achieved a smooth running process and a quality weld deposit.

1. はじめに

船舶建造工程において,工場内での溶接自動化は大幅な進 歩が見られるが,建造ドック内でのブロック搭載工程および ドックサイドでのブロック接合工程における溶接は,その多 くが未だ手作業にて行われている。そこで,船殻ブロックの 突き合わせ溶接を下側より上向きのアプローチにて,かつワ ンランにて全板厚を溶接することのできる船殻外板自動溶 接法¹⁾を開発した。本法は,カーブした溶接トーチを鋼板裏 面から開先ギャップ内に挿入して溶接を行う従来にない特 異な溶接プロセスである。本稿では,船殻外板自動溶接法の 概要とその溶接プロセスのモデル解析より得られた制御方 法について述べる。

2. 船殻外板自動溶接法の概要

溶接装置は,Fig.1 に示すように渠底内を走行可能な自動 走行台車と溶接ヘッド,および溶接ヘッドを船殻外板に押し 付けるためのアーム機構よりなる。溶接ヘッドに取り付けら れた2輪のガイドローラを開先内に挿入することにより,溶 接トーチが開先線に倣うとともに,部材の傾斜に対応して溶 接ヘッドも傾斜する機構となっている。アーム機構は,エア シリンダにより溶接ヘッドを部材に押し上げるとともに,伸 縮することで曲り部 45 度傾斜地点まで溶接ヘッドを移行さ せることが可能である。また,アームの根元はガイドローラ の動きに追従して自由に旋回および横移動するようになっ ており,この2つのスライド機構の変位を検出して自動走行 台車が溶接線に沿って走行するよう操舵輪を制御している。 自動走行台車には制御装置,溶接電源,ワイヤ送給装置,冷 却水循環装置,エアーコンプッレサーなど関係機材一式を搭載している。

船殻外板自動溶接法の概要を Fig.2 に示す。板厚 25mm ま でのワンラン溶接が可能なように 2 電極とし,先行電極は溶 接線方向に湾曲したトーチを開先内に挿入し,水冷銅板で支 えられたガラステープ上で裏波ビードを形成する。

後行電極は開先ギャップ内を通り,先行ビード上に仕上げ ビードを形成する。開先形状は 11mm 以上のギャップを有 する 開先である。溶接ワイヤは 1.6mm のソリッドワイ ヤを,シールドガスは CO₂100%を用いている。溶接電源は, 定格 600A タイプの定電圧直流溶接電源を使用し,先行電極 をワイヤマイナス,後行電極をワイヤプラスとしている。ま た,各電極は開先幅方向にウィービングする。先行電極と後 行電極のアーク間の距離(極間距離)は約 150mm であり, 両者の溶融池は完全に分離している。なお,先行電極と後行 電極の間にある内面水冷銅板は,先行電極のシールドガス送 給口として,また,傾斜部のエレクトロガス溶接時の内面摺 動銅板として用いるものである。

3. 先行溶融池のモデル化

本法の先行電極は,カーブした溶接トーチを鋼板裏面から 開先ギャップを通して溶接を行うため,形成される溶接ビー ドの軸と溶接トーチのそれが同軸となる従来にない溶接プ ロセスである。そこで,特に水平部におけるこの溶接法を「水 平同軸アーク溶接」²⁾と呼んでいる。これは,丁度立向きの エレクトロガス溶接を水平にしたような格好であるが,溶融 池が開先前方に流れぬよう物理的に保持するための水冷銅 板などがないため,溶接ビードの形成速度は溶接現象そのも のに依存すると言える。そこで,この水平同軸アーク溶接法 の溶接現象を定量的に理解し,溶接を安定に制御する方法を 開発するために,本溶接現象のモデル化とモデルによる解析 を実施した。

3.1 モデル化における主な仮定

モデル化に際して用いた主な仮定と基本式を以下に示す。

- (1) 溶融池に作用する力は表面表力と重力,およびアーク力のみとする。
- (2) 溶融池先端は開先幅方向に直線とし,裏ビードも板裏面 ツライチとする。また,開先壁への溶け込み量も考慮し ない。
- (3) アーク力は半径 raの円内に均等に分布し, すべて溶融池 に働く。

Fig.3 Static model of molten pool in horizontal coaxial arc welding

3.2 基本式

上記仮定のもと,溶融池前面全体での水平方向の力のバランスを考えると次式を得る。

$$F_b = F_a + F_s$$
(1)

 ただし,
 F_b : 溶鋼に働く重力, および開先壁との接触角により

 生じる表面張力との和
 F_s : 水平方向の表面張力

 F_s : 水平方向の表面張力
 F_a : $\mathcal{P} - \mathcal{P} \mathcal{D}$

 ここで,
 $F_b = \int_0^b (\rho g y - \frac{2T \cos \alpha}{d}) dy \times d = \frac{1}{2} \rho g h^2 d - 2T h \cos \alpha$
(2)

 $F_s = dT(1 - \cos \theta)$
(2)

 $F_s = dT(1 - \cos \theta)$
(3)

 $F_a = \pi r_a^2 \cdot P$
(4)

 ただし,
 : 溶鋼の密度 (kg/m³)

 g: 重力加速度 (m/s²)
 T: 溶鋼の表面張力 (N/m)

 h: ビード高さ (m)
 d: 開先幅 (m)

 : 溶鋼の開先壁との接触角
 : 溶鋼の前方接触角

 P: アーク圧力 (Pa)
 $r_a: \mathcal{P} - \mathcal{P}$ 上力 (Pa)

 $r_a: \mathcal{P} - \mathcal{P}$ 半径 (m)
 式(1) ~ (4) より

$$\frac{1}{2}\rho gh^2 d - 2Th \cos\alpha = dT(1 - \cos\theta) + \pi r_a^2 \cdot P \qquad \dots \dots (5)$$

よって, *P*がわかれば式(5)より溶融池の高さ *h*が求まる。 3.3 アーク圧力の推定

式(5)において, =90°, =180°とすると,式(5)は次の ように簡素化される。

式(5')は,式(5)から溶鋼の開先壁との接触角に起因する表面張力の影響を無視したものである。

Table 1 に水平同軸アーク溶接における溶接電流変化時の ビード高さの実測値を示す。このように水平同軸アーク溶接 では、溶接電流の増加に伴いビード高さが上昇する。また、 Table 1 にはビード高さの実測値をもとに式(5')より逆算し たアーク圧力の推定値も合わせて示す。これは、半径 5mm の円にアーク圧力が均等に作用するものとして求めたもの で、溶鋼の密度 =7300kg/m³、重力加速度 g=9.8m/s²、溶 鋼の表面張力 T=1N/m としている。このように、アーク圧 力は Table 1 の実験結果より電流の関数として、次式で近似 できる。

Welding Current I (A)	Bead height (Measured) h' (mm)	Arc pressure (Estimated) P (Pa)
280	10.9	372
395	14.0	829
488	17.1	1400
592	21.0	2280

Table 1 Comparison of estimated and measured bead height

Fig.4 は,式(6)を式(5')に代入し,開先幅が変化した場合の ビード高さを推定したものである。図中に合わせて示すビー ド高さの実測値と良く対応していることから,本モデルによ リ水平同軸アーク溶接のビード高さをおおよそ推定するこ とが可能であるとして以後の検討を実施した。

Fig.4 Comparison of estimated and measured bead height

4. 溶接現象のモデル解析

4.1 ビード形成速度

水平同軸アーク溶接プロセスでは,溶接トーチの移動速度 とは無関係に溶接ビードの形成速度が決定される。しかしな がら,形成されるビードの高さがわかれば溶接ビードの形成 速度が推定できる。 開先の場合,溶着効率を100%とする と溶接ビードの形成速度 W(m/s)は次式で表される。

$$W = V_f \cdot S / (d \cdot h) \qquad \dots \dots (7)$$
tetic ,

Vr:ワイヤ送給速度 (m/s)

S: ワイヤ断面積 (m²)

ワイヤ送給速度が一定の場合,ビード形成速度は開先幅 *d* とビード高さ hの積に反比例する。各開先幅におけるビード

形成速度を式(7)および(5)を用いて計算した結果と,実溶接 での平均速度の計測値とを合わせて Fig.5 に示す。両者はほ ぼ同様の変化傾向を示しており,本モデルによりビード形成 速度の推定もほぼ可能である。

Fig.5 Comparison of estimated and measured proper welding speed

4.2 ワイヤ突き出し長さの変化とビード形成速度の 自己平衡

溶接トーチを一定速度で走行させた場合,トーチの移動速度 Vと式(7)で表される溶接ビードの形成速度 Wとの間に差異があるとFig.6と式(8)で示すようにワイヤ突き出し長さが変化することになる。

Fig.6 Estimation of bead formation rate, W, and wire extension length, L

dL/dt = V - W(8)
 しかし, Vと Wの差異が小さい場合, Lの変化による溶
 接電流の変化により Vと Wが自己平衡することが考えられ
 る。つまり,トーチの移動速度 Vが大きいとき,ワイヤ突き
 出し長さLは長くなるが,定電圧特性の溶接電源の場合,ア
 -ク長がほぼ一定となるまで溶接電流が減少するので,ビー
 ド高さ h が減少する。そのため,式(7)により溶接ビードの
 形成速度 Wが増加してトーチの移動速度 Vと等しくなることが考えられる。

今,開先幅が±2mm 急激に変化した場合のワイヤ突き出 し長さの時間的変化を考察する。式(8)に式(7)を代入して次 式を得る。

$$dL / dt = V - V_f \cdot S / (d \cdot h)$$
(9)
ここで,式(5'),式(6)および Lesnewich⁴⁾のワイヤ溶融特
性に関する関係式(10)を用いて式(9)よりワイヤ突き出し長
さの時間変化を数値計算した結果を Fig.7 に示す。Fig.7 に示
すようにワイヤ突き出し長さは徐々に変化するが最終的に
はある値に自己平衡する。このように本モデルは,溶接現象
の動特性を表現できるので,プロセスの制御方法を考察する
上で有効な手段となる。

$$V_f = aI + bLI^2 \qquad \dots \dots (10)$$

Fig.7 Numerical calculated results of wire extension length in the case of changing root opening

4.3 プロセス制御への応用

本溶接プロセスでは,溶接ビードの形成速度 Wと溶接ト ーチの移動速度 Vが等しくならなければ溶接が継続しない。 最も一般的な制御手法として,溶接電流が一定となるように 溶接トーチの移動速度 Vを制御する方法が考えられるが、本 溶接プロセスにおいて溶接トーチの移動速度 V は溶接速度 そのものであり,溶接速度を急峻に変化させることは溶接品 質上,またプロセスの安定性の観点からも好ましくない。な ぜならば,溶接電流の変化は先行電極の問題であり,それに よって後行電極の溶接速度をも変化させることは後行の溶 接に悪影響を及ぼす。さらに,先行電極の電流変化は開先幅 の変化だけに起因するものではなく,短周期では他のさまざ まな溶接現象(たとえば溶滴移行や瞬間短絡,さらに溶融池 の振動など)に起因して発生し,一般に短周期の現象に起因 する変化ほど大きい。ここでは,先に作成したモデルを用い て Vと Wをバランスさせる制御法について考察する。具体 的には,ワイヤ送給速度の制御によりビードの形成速度 W を変化させ, Vと Wをバランスさせる方法について以下に 考察を加える。

ワイヤ突き出し長さの変化によるビードの形成速度 Wの 自己平衡は,式(9)においてビード高さ h が変化することに よりもたらされるものであった。式(9)より,ワイヤ送給速度 Vrを変化させることによっても同様な平衡がもたらせるこ とがわかる。Fig.8(a)は,溶接速度およびワイヤ送給速度を 一定として溶接した場合に,開先幅の変化によってワイヤ突 き出し長さ L がどの程度変化するかをモデルにより計算し たものである。ワイヤ突き出し長さの適用範囲を設定値の ±10mm 程度とすると,溶接が続行可能な開先幅の精度は ±1mm となる。一方 Fig.8(b)は,溶接電流が一定となるよ うにワイヤ送給速度を制御した場合の各開先幅におけるワ イヤ突き出し長さの値を計算したものである。自己平衡の場 合の Fig.8(a)と比べると,開先幅に対するワイヤ突き出し長 さの変化が小さくなり,かつ直線的なものになっていること がわかる。このようにモデル解析の結果,ワイヤ送給速度を 変化させて溶接電流を一定に制御することは,ワイヤ突き出 し長さの変化を減少させるのに有効であることがわかる。

Fig.8 Estimated values of wire extension length in equilibrium in various root opening width

5. 自動制御法の開発

本溶接プロセスを実適用するにあたり,前述のモデル解析 をもとに開先幅の変動に対応する制御法を開発した。つまり, 上記のように溶接電流が一定となるようにワイヤ送給速度 を制御するワイヤ送給速度制御を行うことにより,比較的速 い溶接現象に対応するとともにワイヤ突き出し長さの変動 量を小さく抑える。さらにこれに加え,ワイヤ突き出し長さ の偏差が減少する方向に溶接速度を制御するものである。ワ イヤ突き出し長さは,溶接電流値とワイヤ送給速度より推定 し,制御ゲインを低く抑えて溶接速度を制御している。この 2つの制御法を組み合わせることにより,溶接速度の制御変 化量を必要最小限にするとともに、その変化も緩やかにする ことができ,船殻外板溶接プロセスの安定化を達成した。本 制御法の適用により、板厚 22mm 開先幅 11mm から 20mm までの船殻ブロックを連続溶接することが可能であった。 Photo 1 に,ドックサイド定盤での船殻ブロック溶接時の状 況を示す。

Photo 1 Automatic welding of ship's shell plates

6. おわりに

船殻外板自動溶接法に用いられる先行電極は,形成される 溶接ビードの軸と溶接トーチの軸が同軸となる従来にない 溶接法で,これを水平同軸アーク溶接と呼んでいる。この溶 接プロセスの溶融池モデルを作成し,ビード形成に関するモ デル解析を実施した。その結果,溶接プロセスの安定制御法 を開発し,その有効性を確認することができた。

本研究開発の一部は,競艇公益資金による日本財団の補助 金を受けて,(財)シップ・アンド・オーシャン財団が行う研究 開発の委託を受けて実施しました。ここに,記して感謝の意 を表します。

参考文献

- 西泰彦ほか. "船底外板自動溶接法の開発". 溶接法研究委員会資料, No.SW-2705-2000(2000).
- 2) 西泰彦. "水平同軸アーク溶接現象のモデル解析と制御". 溶接ア ーク物理研究委員会資料, ア物-01-116(2001).
- 3) 黄地尚義. "溶接・接合プロセスの基礎". 東京, 産報出版.
- 4) A. Lesnewich. Control of Melting Rate and Metal Transfer in Gas-shielded Metal-Arc Welding, Part 1 Control of Electrode Melting Rate, Welding Journal, 37-8 (1958), 343s-353s.

<問い合わせ先>

- エンジニアリング研究所 生産技術研究部 Tel. 059 (246) 3062 西 泰彦
 - E-mail address : ynishi@lab.tsu.nkk.co.jp