鋼製伸縮装置の点検技術

The Inspection Technology of the Steel Expansion Joint

山田 浩司 エンジニアリング研究所 生産技術研究部 部長 Kooji Yamada Takehiko Nishigaya 西ヶ谷健彦 エンジニアリング研究所 生産技術研究部 小泉 幹男 Mikio Koizumi 橋梁建設部 開発技術室 室長 萩原 明 Akira Hagiwara ㈱ジャパンテクノメイト エンジニアリング部 主査 Naotake Yoshihara 吉原 直武 鋼管計測㈱ 計測 ·診断事業部 工博

当社は,鋼製伸縮装置のフェースプレート溶接部の損傷を,赤外線カメラによって検出する技術を開発している。本手法は,従来手法とは異なり非破壊検査であり,また検査時間が短いなどの特徴がある。本稿では,実験結果とシミュレーションによる解析の結果を報告する。

NKK is developing inspection technology which can detect damage in a weld of the steel expansion joint by using an infrared radiation thermometer. This method, which is different from conventional methods, applies non-destructive inspection with higher inspection efficiency. This paper describes the test results and the analysis using a simulation method.

1. はじめに

製造業の多くの工程には各種の破壊,または非破壊検査が ある。検査の目的は品質管理・品質保証であり,その重要性 から各種の検査技術が研究開発され実用化されてきた。そし て供用後もその製品が安定して使われ続けるために必要な のが,定期点検を始めとした総合的なメンテナンス技術であ る。最近特にメンテナンスに関する機運が高まっているが, メンテナンスは本来絶対的に必要であることを考えると,検 査技術,補修技術,余寿命評価技術などメンテナンスという キーワードで,今後さらにいろいろな分野の検討や研究開発 が盛んに行われるものと考えられる。

メンテナンスの第一歩は,劣化や損傷程度を正確に把握す ることである。本稿では,当社が開発した橋梁の鋼製伸縮装 置の点検技術に関して報告する。

2. 赤外線カメラ

現在,市場に出回っている赤外線放射温度計(以下,赤外 線カメラと略記する)は,いずれも Planck の放射式や Stefan-Boltzmann の法則を始めとする物体の熱放射に関す る諸法則を検出の原理としている。赤外線カメラは,非接触 の温度測定法として従来の接触式温度計にはなかった種々 の優れた特性を持っているため,特に,電力設備の過熱監視, 炉・プラント設備の異常熱源検知,工場廃水管理などの保 安・省エネルギー,公害防止面での利用のほか,電気・電子 機器,部品の検査,建物外壁の劣化診断などにも有効に利用 されている。

これら従来の利用法は,対象物が持つ表面温度分布をその

ままの状態でとらえるため,対象物に温度差がないような場合には,赤外線カメラが有効に活用できず,利用範囲には自ずから限界があった。

これに対して,対象物の外部または内部に強制的に熱を与 えることにより,対象物内部の欠陥や異常を表面の温度差 (分布)として引き出し,そのときの非定常現象を赤外線カ メラでタイミング良くとらえる「ACTIVE 手法」¹⁾が赤外線 カメラによる有効な検査技術として注目され,利用範囲も著 しい広がりを見せた。

当社でも ACTIVE 手法により,プラント設備診断分野を 中心に,従来赤外線カメラでは不可能と思われていた種々の 可視化技術を開発してきた²⁾。検出器自体の性能向上に加え て,近年のエレクトロニクス技術のめざましい発展により, 赤外線カメラは高性能化,コンパクト化などが著しく進み, その結果として大幅に用途が広がり,現在では設備診断の有 力な手段として位置付けられるようになった。このような背 景のもと,当社は赤外線カメラを使って,鋼製伸縮装置のフ ェースプレートとウェブ,リブ,アンカーバーなどの溶接部 のき裂を検出する検査技術を開発した。

3. 鋼製伸縮装置

伸縮装置は,温度変化やコンクリートのクリープ・乾燥収 縮などによる橋梁上部工の伸縮と,活荷重などによる桁端部 の回転に追従し,安全かつ円滑に車両が走行できるように設 置されるが,経年変化により生じた段差による衝撃も大きく, 損傷が生じやすい³⁾。伸縮量の大きな橋梁に適しているのは 鋼製の伸縮装置である。鋼製伸縮装置は,床版遊間をフェー スプレートが櫛形となってかみ合うように左右から張り出 す片持ち式と,左右を架け渡す支持式,さらに鋼重ね合わせ 式などに分類できる⁴⁾。また鋼製伸縮装置は地中に埋設した ウェブやリブ,そしてアンカーバーなどで構成されている。 片持ち式鋼製伸縮装置の構造概念図を Fig.1 に示す。

Fig.1 Structural configuration of steel expansion joint

鋼製伸縮装置は,車両の輪荷重の影響を直接受け,さらに 腐食などが複合的に作用するため道路橋の中でも最も損傷 が発生しやすい箇所の1つとなっている^{5),6)}。鋼製伸縮装置 の損傷としては,フェースプレートの段差やわだち掘れなど のように道路上から目視や簡単な計測装置により検出でき る損傷のほか,ウェブ,リブ,アンカーバーなどの腐食によ る減肉や,これらウェブ,リブ,アンカーバーなどとフェー スプレートとの溶接部に生じるき裂のように,掘削せずに道 路上からの目視だけでは検出できない損傷がある。本稿で報 告する検査技術は,フェースプレートとウェブ,リブ,アン カーバーなどとの溶接部のき裂を,フェースプレート上から 道路を掘削することなく検出するものである。

4. 測定の原理と手順

フェースプレートとウェブ溶接部とのき裂検出を例に,本 手法の測定原理と手順を(1)~(4)に示し,測定原理図をFig.2 に示す(リブやアンカーバーの溶接部に関しても同様の原理 と手順で測定する)。

(1) 検査位置の確認

フェースプレート裏面のウェブ溶接位置を確認する。 (2) フェースプレート加熱

上記で確認した検査位置を高周波誘導加熱装置により局 部的に短時間で加熱し,一定熱量Qを与える。 (3) 加熱後熱画像の記録

加熱コイルを迅速に取り除き,加熱後一定時間経過した後で,フェースプレートの熱画像を赤外線カメラで記録する。 (4) 判定

フェースプレートと裏面ウェブの溶接部が健全な場合に は、フェースプレートからウェブへの熱拡散が大きいために フェースプレート温度は冷却し易く、反対に溶接部に腐食に よる減肉やき裂がある場合には、フェースプレートの熱がウ ェブへ拡散し難いためにフェースプレートの温度は高い状 態が続く。以上のように加熱後、一定時間経過後にフェース プレート温度を熱画像として計測し、解析することによりウ ェブ溶接部の健全や損傷を判定することができる。

5. 基礎実験

鋼製伸縮装置の溶接部損傷検出の可能性検討,妥当性確認 のため行った基礎実験の結果を以下に示す。

- 5.1 実験装置·条件
- (1) 加熱法
- 高周波誘導加熱法
- (2) 温度分布測定
 赤外線カメラ
 温度測定範囲 : 20~200
 最小検知温度差:0.03
- (3) その他条件
- 加熱時間 :5秒
- 雰囲気温度:20 (室温)
- 5.2 試験体

撤去した鋼製伸縮装置に,放電加工によりき裂を模擬した スリット加工を施し,続いてコンクリートを打設して試験体 とした。試験体の概要を Table 1 および Fig.3 に示す。

Table 1 List of specimen

Specimen	Length of slit	Width of slit	Depth of slit		
No.1	(Not damage)				
No.2	50mm	0.5mm	13mm		
No.3	150mm	0.5mm	13mm		

Fig.3 Configuration of specimen

5.3 実験結果

加熱後一定時間経過後のフェースプレート熱画像を Fig.4 ~Fig.6 に示し,おのおのの熱画像での 40 以上の面積(以 下,S40と略記する),45 以上の面積(以下,S45と略記す る),最高温度(以下,T_{max}と略記する)を Table 2 に示す。 なお,Fig.4~Fig.6 には,フェースプレートの輪郭を白線で 描画した。

Fig.4 Thermography of face plate (Specimen No.1)

Fig.5 Thermography of face plate (Specimen No.2)

Fig.6 Thermography of face plate (Specimen No.3)

Table 2 Results of experiment

Specimen	Length of slit	S40 mm ²	S45 mm ²	T _{max}
No.1	0 mm	13.1	0.5	45
No.2	50 mm	14.1	1.7	47
No.3	150 mm	14.4	2.5	48

5.4 結論

Fig.4~Fig.6 および Table 2 から以下の結果を得た。 (1) 試験体 1 (健全)と比較して,き裂が長い試験体ほど最高 温度 (T_{max})が高く,かつ高温の面積 (S40, S45)が広かった。 (2) フェースプレート熱画像からも同様に,き裂が長い試験 体ほど高温領域が広かった。

以上から,本手法の原理の確認ができ,さらに試験体によ る熱拡散の差をフェースプレートの熱画像を比較すること で検出できることを確認できた。

6. 数值解析

基礎実験により,本方法にてウェブ溶接位置のき裂フェー スプレート上から検出できることを確認できた。続いて実験 結果の妥当性を確認するために数値解析を実施した。数値解 析は汎用 FEM 解析ソフト ANSYS(5.7)を用いて電磁誘導 解析を行い,その結果(発熱分布)を用いて非定常熱伝導解 析を行った。

6.1 解析条件

解析条件およびモデルは,5章の実験に用いた試験体および装置を参考にした。Fig.7に試験体の形状,寸法を示す。 6.2 解析結果

フェースプレート各部の温度変化を Fig.8~Fig.9 に示す。 また,ウェブ直上(以下,P1 と略記する)の温度変化を Fig.10 に示す。さらに,加熱後一定時間経過後の温度分布画像を Fig.11~Fig.12 に示す。

6.3 結論

これらによると,ウェブ溶接位置のき裂の有無により,フ ェースプレート上 P1 位置の温度変化に以下の違いがあった。 (1) 健全モデルでは,加熱後 10 秒程度は温度上昇するが, その後温度勾配はマイナスに転じ,加熱後 25 秒経過後から は-0.01 /secで降温し続けた。 (2) 損傷モデルでは加熱後も温度上昇が続き,加熱後40秒 程度経過後までは+0.02 /secだった。その後温度勾配は減少し,加熱後1分経過後から降温を始めた。

以上のことから,ウェブのき裂の有無による熱拡散の違い はフェースプレート温度に現れており,測定原理および実験 結果の妥当性を確認できた。

Fig.7 Illustration of calculation model

150 Heating(5sec) P4 -P1 - 120 -~ P1 P2 Temperature[90 - P2 --- P3 60 → P4 88 30 0 0 30 60 90 120 Time[sec]

Fig.8 Transition of temperature (Not damage model)

Fig.11 Distribution of temperature (Not damage model)

Fig.12 Distribution of temperature (Damage model)

7. おわりに

今後ますますニーズが高まるメンテナンス技術のなかで, 検査技術は補修技術,余寿命評価技術などと並んで中核を担 う技術である。そして本稿で報告した鋼製伸縮装置の検査技 術は,橋梁以外の診断にも応用できる可能性を備えている。 今後は,より高精度な判定を行えるように本技術の検討を重 ね,自動化を推進して技術としての完成度を向上させる所存 である。

参考文献

- 1) 久保田広ほか. "光学技術ハンドブック". 朝倉書店. 1968.
- 2) 腰原敏夫ほか. "配管系診断技術の開発と適用(2)". NKK 技報. No.124, pp.42-47(1988).
- 3) 多田宏行. "橋梁技術の変遷". 鹿島出版会.
- 4) 中島拓. "伸縮装置". 橋梁と基礎. 1986-8.
- 5) (社)日本道路協会. "鋼橋の疲労". 丸善(株).
- 6) 西川和廣ほか. "鋼橋の架替えに関する調査結果()". 土木研究所 資料第 3512 号. 1997-10.

<問い合わせ先>

エンジニアリング研究所 生産技術研究部 Tel. 059 (246) 3051 西ヶ谷 健彦 E-mail address : nisigaya@lab.tsu.nkk.co.jp