風力発電設備の動的特性と耐震設計の基礎的考察

A Fundamental Study on Dynamic Characteristics and the Seismic Design of Wind Turbine Generator Systems

棚邉	隆	シビルエンジニアリング部 土木建築設計室 主査	Takashi Tanabe
飯田	泰彦	シビルエンジニアリング部 土木建築設計室 主査	Yasuhiko lida
増田	博	シビルエンジニアリング部 土木建築設計室	Hiroshi Masuda
大塚	久哲	九州大学大学院 教授 工学研究院建設デザイン部門	Hisanori Otsuka
榊	豊和	九州大学大学院 工学府建設システム工学専攻 修士課程	Toyokazu Sakaki

近年風力発電設備は、スケールメリットによるコストダウンを求めて大型化する傾向にあり、風力発電設備の支持構造であるタワーおよび基礎構造の重要性が増している。本稿は、風力発電タワーの運転時における動的特性を、実機の振動計測により分析し、次に、その振動と地震動の組み合わせ荷重下におけるタワーの応答を動的解析により求め、風力発電設備の耐震設計法に関して考察したものである。

Recently, WTGS (Wind Turbine Generator System) has increased in number and its size has been getting larger because of the pursuit of efficiency. This paper firstly presents investigation on the dynamic characteristics of WTGS tower from the result of field measurement. After that, the study on the seismic design method for the WTGS tower is introduced with the results of linear dynamic and static analysis.

1. はじめに

風力発電設備は、風車・発電機・その他制御機器および それらの支持構造であるタワーおよび基礎構造から構成さ れる。タワーの設計に対する基準としては, International Wind Turbine Standard IEC61400-1 (1999年) が一般に 用いられているが、地震のない欧州で作成された同基準で は、地震に関しては、考慮するべき項目として明記されて いるものの、具体的な設計法を示すには至っていない(風 荷重に関しては非定常性を定義するなど詳細に規定されて いる)。また、日本においては、建築基準法の適用対象と なるため、同法にて規定する風荷重および地震荷重に対し て, 煙突関連の設計指針を準用し許容応力度の照査を実施 している。しかし、本構造の設計においては、設備の稼働 時振動(風荷重)と地震荷重の組み合わせ法など,風力発 電特有の課題があり、耐震設計指針の整備が望まれる。ま た,設備の普及拡大に伴い,いわゆるレベル2地震(関東 大震災・阪神大震災級地震)に対する性能規定も重要な課 題と考える。

これらを踏まえて本研究ではまず,対象とした風力発電 設備に対して動的特性の把握を目的とした振動計測を行い, その結果を基にタワーの常時振動特性の考察を行った。次 に,その常時振動と地震動の組み合わせ荷重下における動 的応答解析を行い,風力発電設備のタワーの耐震設計法に ついて検討した。

2. 対象とした風力発電設備の概要

今回対象とした 600kW 大型風力発電設備の写真を Photo 1, その諸元を Table 1 に示す(平戸風力発電所 2 号機,表中の風速は瞬間風速値を示す)。

Photo 1 LW50/750 (Hirado)

Table 1 Basic specifications

構造形式	鋼製自立式(変断面モノポール構造)			
タワーの高さ	46m	起動風速	3.0m/s	
基礎の高さ	0.3m	定格風速	13.0m/s	
タワーの外径	頂部 2.0m, 基部 3.5m	停止風速	$25.0 \mathrm{m/s}$	
耐風速	60m/s	ブレード長	23.9	
定格回転数	27rpm	ハブ高さ	50m	
定格出力	600kW	最大高	75.25m	

3. 現地計測

3.1 現地計測概要

2001年3月2日~4月2日にかけての1ヶ月にわたりタ ワーの振動計測を行った。まず, FFT アナライザ(CF-250) を使用してタワーの固有振動数を分析した。その後, Fig.1 に示す位置に(1)風向1成分,風速1成分,(2)羽根の回 転数1成分,(3)タワーの応答加速度(南北方向と東西方 向)2成分,(4)タワー基部の軸方向ひずみ(東西南北)4 成分の連続計測を行った。また,データサンプリング間隔 は計測機器および計測日数の都合により0.1秒とした。

Fig.1 Measurement items and location

3.2 計測による固有振動数

FFT アナライザを使用して固有振動数の計測を行った。 固有振動数の計測を行うときは、ブレードは回転しておら ず、Fig.1 に示すようにブレードに対して直角方向(以下、 ブレード直角方向と略記する)が EW 方向、ブレードに対 して水平方向(以下、ブレード方向とと略記する)が NS 方向であった。固有振動数はブレード直角方向、ブレード 方向ともに 0.619Hz という結果となった。

3.3 風力発電設備の常時振動特性

ここで言う常時とは地震時を除いた風力発電設備の稼動 時のことを指す。Fig.2 は3月2日の計測開始時から3月9 日の午前0時までの加速度と変位の計測データの時系列変 化(5分間隔の最大・最小)を示している。期間中の最大 応答加速度は3月4日のNS方向で738gal,最大応答変位 は3月4日のNS方向の185mmであった。なお,変位は 計測加速度を周波数フィルタリング法により2回積分して 求めた。

期間中に行った振動計測のデータから代表的な値を取り 出し,タワーの常時振動特性の検討を行った。

Fig.3 は計測による NS 方向の加速度波形を示したもの である。(a)~(d)は回転数をパラメータとしたもので,(e) はブレードの回転が停止する直前の加速度波形,(f) は回 転停止時の加速度波形である。回転数が増加するにつれて 応答加速度も増加する傾向となっているが,回転数17rpm (風速 5.8m/s)付近で,明らかに他とは異なる波形となっ た(b)。ブレードの回転は定格回転時で 27rpm(d),その後 さらに回転数が上がり 29rpm になると回転は停止してい る(e)および(f)。回転停止時の最大応答加速度は 75.9gal, 定格回転時(回転数 27rpm)では-362.2gal,回転が停止 する直前では 391gal となった。風速が増加してもある値

Fig.2 Measured acceleration and displacement (5min max-min)

以上になればブレーキが作動して発電を停止させるシステム(ストール制御)となっているが,風速が上がりストール制御がかかり始めるまでには時間的な誤差が生じる。風速が大きく,かつ,ブレードが回転しているこの瞬間に大きな加速度が生じているようである。

次に、加速度波形をフーリエ変換してフーリエスペクト ルを求めた(Fig.4)。(a)では一次と二次の固有振動数付近 の約0.65Hz(Table 2の固有値解析結果参照)と5Hz付近 の高周波成分が卓越していた。(b)では2Hz付近のスペク トルが卓越しているが、これは別途ねじりの自由度を考慮 して固有値解析を行ったところ1832Hzのねじりモードが 確認されており、これに対応するモードであると考えられ る。(c)~(e)では三次と四次の固有振動数付近である4Hz 以上の高周波成分(Table 2の固有値解析結果参照)が卓 越していた。(f)の回転停止時では、一次と二次の固有振動 数付近(約0.65Hz)と三次と四次の固有振動数付近(4Hz 以上の高周波成分)およびねじれの影響であると思われる 2Hz付近が卓越していた。また,回転数が増加すると卓越 振動数は低周波から高周波に変化する傾向となっている。 応答加速度の特性については,NS方向とEW方向は類似 した傾向となっていたために,ここではEW方向の検討は 省略した。

4. 日本におけるタワー設計法

現在,日本国内においてタワーの高さが 15m を越えるも のは,建築基準法施行令 138条の工作物の適用対象となる。 したがって,本施行令に該当するタワー構造およびその基 礎構造は建築基準法の関連諸法令を尊守する必要があり, 建設に際しては,監督官庁による構造計算書などの事前確 認が必要となる。

Fig.4 Fourier spectrum of measured acceleration

今回対象とした風力発電設備の建築基準における風荷重 および地震荷重に対するタワーの設計曲げモーメントおよ び水平変位を Fig. 5 に示す。

Fig.5 Bending moment and displacement

なお,荷重方向はブレード直角方向とし,各荷重は以下 に示す条件により設定されている。

 (1)風荷重:地表面粗度区分 Ⅲ Gf(ガスト係数)=2.1 規準風速 Vo=25 (m/sec) 定格運転時最大風速 =48 (m/sec) 暴風時風速

(2) 地震荷重:震度法設計水平震度 kh =0.3

定格運転時の風荷重と地震荷重による曲げモーメントお よび変位の応答値は同程度であり、暴風時の風荷重による 応答値はおよそ2倍となっている。Fig.5からもわかるよ うに、現行のタワーの設計法では、地震荷重よりも風荷重 の方が大きく、支配的である。

5. 地震時に対する静的解析および動的解析

ここでは、道路橋示方書の考え方に準拠したタイプ I お よびタイプ II 地震動に対する解析を静的および動的の両方 に関し実施し、風力発電設備タワーの耐震設計について検 討した。

5.1 解析モデルおよび解析条件

解析モデルは Fig.6 に示すような総節点数 31 の三次元線 形梁モデルである。節点 30 にはブレードとナセル部の集 中質量 503.5kN を,節点 2 には基礎の集中質量 10211.6kN と回転慣性重量 124166.0kNm を与えた。基礎重量を除い たモデルの全重量は 1131.1kN であり,その内の 45%がタ ワー頂部の節点 30 に集中している。地盤種別は II 種地盤 で,地盤バネは水平,回転の1組の線形バネとして与えた。 タワー部は鋼管で材質は SS400(σ y=235 N/mm²)である。 部材の減衰定数は,タワー部は 2%,地盤バネは 20%とし た。

Fig.6 Analysis model

5.2 固有值解析結果

このモデルを用いた固有値解析結果を Table 2 に示す。 Fig.6 に示すように, X 方向はブレード直角方向, Y 方向は タワーの高さ方向, Z 方向はブレード方向である。

また,モデルの妥当性を検証するために前述した FFT アナライザによる固有振動数の計測値と固有値解析結果の 比較を行った。

計測値はブレード方向とブレード直角方向はともに 0.619Hz,解析値はブレード方向(Z方向)が二次固有振 動数の0.637Hz,ブレード直角方向(X方向)が一次固有 振動数の0.636Hzであり,計測値と解析値の誤差はブレー ド方向,ブレード直角方向ともに2.5%であり,解析モデル は妥当と判断される。

Table 2 Results of eigenvalue analysis

	固有振動数および固有周期		累積有効質量比(%)		比 (%)
次数	Hz	sec	Х	Y	Z
1	0.636	1.572	7	0	0
2	0.637	1.569	7	0	7
3	4.670	0.214	12	0	7
4	4.821	0.207	12	0	12
5	8.394	0.119	92	0	12
6	8.456	0.118	92	0	94
7	11.352	0.088	96	4	94
8	13.817	0.072	96	4	98
9	15.280	0.065	99	6	98
10	17 392	0.057	99	6	100

5.3 静的解析

5.1 節の解析モデルおよび解析条件に従い,地震時保有 水平耐力法レベルの入力に対する解析を行った。入力方向 はブレード直角方向とした。ブレードの全重量およびタワ 一重量の 1/2 を,道路橋示方書における等価重量(W)と してブレード回転軸の位置(節点 30)に集中させ,保耐法 に用いる設計水平震度(khco)を作用させた。

一次固有周期:T=1/0.636=1.57 (sec)地盤種別 : Ⅱ種

- (1) タイプ I khco=0.85 (プレート境界型)
- (2) タイプⅡ khco=1.22 (内陸直下型)

5.4 動的解析

5.1 節の解析モデルおよび解析条件に従い,動的解析を 行った。減衰マトリックスは,固有値解析より算出したひ ずみエネルギー比例型減衰からモード減衰定数を算定,有 効質量の卓越する2つの次数(一次と五次)のレイリー減 衰に換算して時刻歴解析に用いた。

また,数値解析手法としては,運動方程式を直接積分し て構造物の応答を求める Newmark- β 法を用いた。また, $\beta = 0.25$,積分間隔は 0.01 秒とした。

入力地震動は,道路橋示方書 V 耐震設計編に規定される 標準加速度応答スペクトルに近い特性を有するように振幅 調整された II 種地盤用のタイプ I,タイプ IIの標準波

(Table 3)をそれぞれ3波用い,3波平均を応答値とした。 なお,地震波の入力方向は5.3節と同様にブレード直角方 向とした。

5.5 静的および動的解析結果の比較

Fig.7 に静的解析および動的解析による曲げモーメント および水平変位図を示す。タイプ I 地震に対するタワー基 部の曲げモーメントは,静的解析では 29543kNm,動的解 析では 37955kNm となり,両ケースとも降伏モーメント

(46264kNm) 37955kNm となり、両ケースとも降伏モーメント(46264kNm)には至っていない。タイプⅡ地震に対しては、タワー基部のモーメントは静的解析で42402kNm となり、降伏には至っていないが高さ10m~40mの区間では降伏している。また、動的解析では、ほぼ全断面において降伏している。

以上の結果より,タイプ I 地震に対しては静解および動 解のいずれも降伏モーメントには至らないが,タイプ II 地 震に対しては降伏モーメントを超えることがわかる。また, 降伏に至る場合,タワー基部よりはむしろ中間部分から降 伏することがわかる。これは建築物と道路橋とで水平震度 のかけ方が異なるためにこのような結果になったと思われ る。最後に静解と動解の結果を比較すれば,高次モードの 影響により曲げモーメント・水平変位ともに動解の結果の 方が大きく出ており,動的解析の必要性を伺わせる結果と なっている。

Fig.7 Comparison of analysis results

	地震名	マグニチュード(M)	記録場所	振幅調整後の最大加速度(gal)
タイプ I	1968年 日向灘沖地震	7.5	板島橋周辺地盤上 LG	-362.617
	1968年 日向灘沖地震	7.5	板島橋周辺地盤上 TR	384.925
	1994年 北海道東方沖地震	8.1	温根沼大橋周辺地盤上 TR	-364.849
			JR 西日本鷹取駅構内地盤上 N-S	686.831
タイプⅡ	1995年 兵庫県南部地震	7.2	JR西日本鷹取駅構内地盤上 E-W	-672.639
			大阪ガス葺合供給所構内地盤上 N27W	736.334

Table 3 Summary of earthquake wave

6. 稼動時振動と地震動の重ね合わせ

現行の設計法では、地震荷重と風荷重の重ね合わせに関 する規定はないが、本構造では、地震時にはブレードは回 転している可能性が高く、地震時においても風荷重および ブレードの回転に伴う稼動時荷重が同時に作用すると考え られる。よって、この解析では、風荷重とブレードの回転 に伴う稼動時振動を、振動外力をタワー頂部(節点 30)に 作用させることにより近似的に表現し、この振動外力と地 震波を同時に作用させ動的解析を行った。

稼動時振動外力は現地計測の結果に基づいた動的解析に より設定し、入力地震波は Table 3 に示すタイプⅠ,タイ プⅡの標準波の6ケース(上から順に, Case1~6)とした。

Fig.8 は動的解析と同時解析は地震波のみと地震波と振動外力を同時に作用させたときのタワー基部の最大曲げモ ーメントを比較したものである。どのケースにおいても, 振動外力と動的解析の単純な足し合わせにはなっておらず, しかも曲げモーメントの増加率は小さい。したがって,こ の方法によれば,地震時には稼動時振動の影響は小さく, 実務設計上無視できる範囲内であると考えられる。

7. まとめ

本研究では振動計測結果を基にタワーの常時振動特性の 考察を行った。次に設計曲げモーメントおよび水平変位を 現地計測の結果と比較した。さらに,道路橋示方書に準拠 したレベル2地震動に対する静的および動的な解析を行っ た。最後に,計測結果より稼動時振動を推定し,その振動 外力と地震波を同時に作用させて解析を行い,風力発電設 備のタワーの耐震設計法について検討した。その結果次の ような知見が得られた。

(1) ブレードの回転数が増加するとタワーの卓越振動数は 低周波から高周波に変化する傾向となる。また、回転数 17rpm(風速 5.8m/s)では 2Hz 付近の振動数が卓越し、 ねじれ振動が発生する。

(2) 現行のタワーの設計法では、地震荷重よりも風荷重の

方が大きく,支配的である。また,計測最大変位は同じ高 さにおける定格運転時の風荷重よりも大きく,暴風時より も小さい。基部の計測最大曲げモーメントは建築基準にお ける定格運転時の風荷重よりも小さく,安全側で設計して いると言える。これは,建築基準が突風(ガスト係数)な ど不確実性を考慮して風荷重を割増しているためと思われ る。

(3) 静解および動解の結果,タイプ I 地震に対してはとも に降伏モーメントには至らないが,タイプ II 地震に対して は降伏モーメントを超える。レベル 2 地震による解析結果 より降伏モーメントを超える応答が得られたことにより, 重要性の高い施設に関してはレベル 2 地震に対する検討が 今後必要となろう。

(4) 静解による検討で降伏に至る場合,タワー基部よりは むしろタワーの中間部分から降伏する。道路橋示方書では, 原則的に構造物の付け根部で降伏するように断面を決定し ているが,本タワーではそうなっていない。どのような構 造が真に耐震的であるかの検討も含めて設計水平震度のか け方に関する考察が今後必要であろう。

(5) 振動外力と地震波を同時に作用させた解析によれば, 地震時には稼動時振動の影響は小さく,基部の曲げモーメ ントの増加率は小さい。この程度の増加率であれば,実務 設計上無視できる範囲内であると考えられる。ただし,今 回対象とした風力発電タワーの高さは46mであり,最近は 風車の大型化に伴い,70mを超えるタワーが主流になりつ つある。70m級のタワーについても同様の結果になるかど うかについては今後検討の必要があると思われる。

8. おわりに

本稿は、九州大学と当社で実施した共同研究の成果の一 部をまとめたものである。現地計測において得られた大量 のデータは、未だ、整理・分析が完了した状態とは言いが たく、引き続き分析中である。追って、まとまり次第報告 したいと考えている。

最後に,現地振動計測に際しては,㈱平戸風力発電所殿 ならびに㈱高谷土木殿の多大なる協力を賜り,ここに記し て謝意を表します。

参考文献

- 1) 新エネルギー産業技術総合開発機構 (NEDO). 風力発電シス テムの設計マニュアル.
- 2) 日本道路協会. 道路橋示方書・同解説 Ⅳ. 下部構造編, 1996.12.
- 3) 日本道路協会. 道路橋示方書·同解説 V. 耐震設計編, 1996.12.
- 4) 寺村彰ほか.風力発電用制振装置の開発.大林組技術研究所報. No.60, 2000.

<問い合わせ先>

シビルエンジニアリング部 土木建築設計室 Tel. 045 (505) 7718 棚邉 隆 E-mail address:tanabet@eng.tsurumi.nkk.co.jp