固化処理土中詰二重矢板式護岸

Double Sheet Pile Quaywalls Filled with Pre-mixed Soil

1. はじめに

循環型社会を形成するため,建設工事においても,産業 副産物の有効利用,資材の再利用,天然資源の使用量抑制 が求められている。このような背景から,浚渫土や建設発 生土を固化処理して,二重矢板式護岸の中詰土として利用 する環境負荷低減型の構造形式を提案した(図1)。

この構造形式の力学的特性を遠心模型実験により明らか にし、さらに、この実験を再現する二次元の FEM 解析モ デルを作成して、挙動特性の検討、設計的な評価を行った。 その結果、今まであまり有効利用されることがなかった浚 渫土を固化処理して中詰土として有効に利用できることを 確認した。また、固化処理土を中詰した構造形式は、従来 の天然良質砂などを中詰した構造形式より設計的に安全側 になることを確認し、新しい二重矢板式護岸を実用化した。

図1 固化処理土を中詰した二重矢板式護岸

2. 固化処理土中詰二重矢板式護岸の特徴

従来の二重矢板式護岸は,遮水性,構造的安定性,施工 性などに優れ,廃棄物処分場護岸などに広く普及している が,中詰土には天然の良質砂や砕石などを使っている。浚 渫土は,固化処理すると施工性が良く,固化後は,遮水性, 工学的安定性に優れるため,護岸漏出防止工や仕切堤など の土資材として有効利用される事例が増えつつある。

浚渫土を固化処理して中詰土とした二重矢板式護岸は, 上記のような長所が十分活かされ,従来形式と比較して, 以下のような特徴を持っている。(1)建設副産物を有効に利 用し,天然資源の使用量を抑制できる。(2)固化処理土の透 水係数がきわめて小さいため,護岸全体の遮水性を高める ことができる。(3)外力に対する護岸の変形,矢板に発生す る応力がともに小さく,構造物全体の小型化,建設費の低 減が可能である。

3. 遠心模型実験とその解析

固化処理土を中詰した二重矢板式護岸の力学的な挙動の 確認と従来の砂を中詰した二重矢板式護岸と変位や発生応 力を比較することを目的として,実際の1/50の模型を製作 し,遠心実験装置で静的載荷試験を行った。実験の概要を 図2に,諸元を表1に示す。遠心力は50gであり,水深 10m程度の構造物を想定した。なお,実験の容易さと信頼 性の高いデータを得るため,乾燥状態で行った。

図2 遠心模型実験の概要

表1 実験の諸元

模型縮尺		1/50 (遠心加速度 50g)		
土槽寸法		幅 1200×高さ 600×奥行き 200mm		
海底地盤		乾燥した豊浦標準砂を自然落下法で投入		
矢板		厚さ 7.1mm,根入れ 280mm,突出 260mm の鋼板		
中諸	固化処理土	笠岡粘土(原料土)と早強ポルトランドセメントと水道水を 混練り (一軸圧縮強さ 500kN/m ² 以上)		
	砂(比較材)	乾燥した豊浦標準砂		

実験結果の一例として、図3に構造物の変位と矢板の曲 げモーメントの分布を示す。中詰を固化処理土にすると、 天端の変位、曲げモーメントの最大値とも小さくなること が実験により確認された。

図3 遠心模型実験結果の一例 (常時荷重相当載荷時)

さらに、遠心模型実験を再現する二次元 FEM モデルを 作成し、解析的に挙動の検討を行った。図4 に解析モデル を、表2 に解析に用いた定数を示す。矢板とタイロッドは 線形とし、地盤と中詰は Mohr-Coulomb の破壊規準に従う 弾塑性体とした。矢板と地盤間、矢板と中詰間は、摩擦や 付着を非線形で考慮した。

図4 二次元 FEM 解析モデルの概要

		固化処理土	砂
	相対密度 D _r %	83	78
地	弾性係数 E kN/m ²	E=2800N, N=0.02(σ +70)(Dr/21) ² ,	
盤	単位体積質量 $\gamma kN/m^3$	σ:有効上載圧 15.8	15.6
	内部摩擦角 ϕ deg.	40	40
中	弾性係数 E kN/m ²	2.0×10 ⁵	地盤と同じ方 法で算出
	単位体積質量 γ kN/m ³	14.8	14.0
詰	内部摩擦角 ϕ deg.	0	35
	粘着力 c kN/m ²	420	0

表2 解析に用いた定数

解析結果の一例を図5に示す。

図5 解析結果の一例(常時荷重相当載荷時)

中詰が固化処理土でも砂でも、変位分布、曲げモーメン ト分布ともに実験値と解析値はよく一致している。したが って、中詰の種類にかかわらず、二次元の弾塑性 FEM 解 析で遠心模型実験を再現できる。

解析により構造物の挙動を推定できることが確認された ため、実験では実施困難な荷重載荷方法(分布荷重),水 中状態などの影響を解析的に求めた。その結果,固化処理 土中詰は有効であり,砂中詰と比較して設計的に安全側で あることを確認した。

4. 設計例

前章で述べた解析方法で,実際の埋立地護岸の変位,応 力などを計算し,試設計を行った。

設計条件は,水深 10m, SCP 改良(改良率 78.5%)地盤, 設計震度 0.2 とし,外力などは港湾の施設の技術上の基準 に拠った。固化処理土の一軸圧縮強さは 500kN/m²以上と した。試設計により求まった断面を図 6 に示す。

図6 試設計断面の例

5. おわりに

固化処理土中詰二重矢板式護岸は、建設副産物を有効利 用し、天然資源使用量を抑制する循環型社会形成に寄与す るものである。また、高い遮水性を備えていることから管 理型廃棄物埋立護岸に適するものでもある。これらの成果 が地球環境問題に少しでも役立つことを願っている。なお、 本件は、1998~2000年度の3年間、運輸省港湾技術研究 所殿(現独立行政法人港湾空港技術研究所)、東亜建設工 業㈱殿との共同研究として実施されたものである。

<問い合わせ先>

基盤技術研究所 都市工学研究部

Tel. 044 (322) 6260 鈴木 操

E-mail address : misao@lab.keihin.nkk.co.jp

建材センター 建材技術開発部

Tel. 03 (3217) 3302 水谷 慎吾

E-mail address : Shingo_Mizutani@ntsgw.tokyo.nkk.co.jp