パイプトラス橋の新形式格点構造

A New Joint for a Pipe-truss Bridge

栗原	康行	基盤技術研究所 都市工学研究部	Yasuyuki Kurihara
加藤	真志	技術企画部 企画調整グループ 統括スタッフ 工博	Masashi Kato
伊藤	久	エンジニアリング研究所 船舶・構造研究部 主幹 工博	Hisashi Ito
中村	哲也	エンジニアリング研究所 船舶・構造研究部 主任研究員	Tetsuya Nakamura
川畑	篤敬	橋梁建設部 開発技術室 主查	Atsunori Kawabata
猪村	康弘	橋梁建設部 開発技術室 統括スタッフ	Yasuhiro Imura

本開発は,形鋼を用いることにより,低コスト化を目指したパイプトラス橋の格点構造について検討した ものである。パイプトラス橋の従来型構造である「パイプ分岐型継手構造」と「ガセット式継手構造」, 建築構造にしばしば用いられる鋳造製の「C型鋳造構造」について解析的検討を行い,応力集中の原因を 解明した。この結果から「パイプ分岐型継手構造」と「C型鋳造構造」の利点を活かし,低コストで施工 性・疲労耐久性に優れた"筒型鋳造構造"を提案した。また,"筒型鋳造構造"の疲労耐久性に対する優 位性を実験により実証した。

This paper deals with the development of a new joint for a pipe-truss bridge. In order to the joint of the pipe-truss bridge is required to decrease the stress concentration. Three joint types, namely, "diverged pipe joint", "C-type cast joint", and "gusset joint" are numerically analysis and investigated stress concentration mechanisms. As the result of the investigation, we propose "cylindrical cast joint" that has the advantage of the "diverged pipe joint" and the "C-type cast joint". We concluded that the "cylindrical cast joint" excels in cost performance, durability, and execution. Fatigue experiments were conducted in order to investigate the fatigue durability of the "cylindrical cast joint".

1. はじめに

近年,橋梁分野においては,橋梁建設費の縮小を目指し た,構造の省力化・合理化による,低コスト橋の開発に注 力している。

低コスト化を目指し、当社ではコンクリートとの合成構 造や、少数主桁橋などさまざまな開発を行っている。なか でも、パイプトラス橋(Fig.1)は、形鋼を立体的に組んだ トラス構造を採用し、低コストで美観に優れた特長を持つ 新形式橋梁である。この形式の橋は構造上、斜材軸力と弦 材軸力が複雑に作用する格点部が施工性および疲労強度の 要となる。本稿では、低価格で疲労耐久性に優れた格点構 造の提案および解析・実験的な検討を行った内容を報告 する。

2. 格点構造

本稿で対象とするパイプトラス橋は,支間長 32m+40m +32mの3径間連続合成橋(Fig.2)とした。検討する格点 は,疲労の最も厳しい格点(活荷重による軸力変動振幅の 絶対値が最大となる部材を有する格点。ただし支点は除く) とする。この格点を決定するために,活荷重の影響線載荷 を行い,(1)「斜材軸力の振幅が最大となる格点」および(2)

Fig.1 Image of a pipe-truss bridge

「弦材軸力の振幅が最大となる格点」を調査した。その結果, (1)は格点 D19, (2)格点 L13 となった。

コスト・美観を考慮し、検討対象とする格点構造は、以下の3種類とした。まず、鋼管を使用したパイプトラス橋 として知られるルーリー橋(仏)で採用されているパイプ を相互に直接溶接接合する(1)「パイプ分岐型継手構造」 (ただし、ここでは斜材を相互に重ねてオーバーラップ構 造としている)、一般的なトラス構造で用いられている(2) 「ガセット式継手構造」(この構造では斜材が H 断面ある いは箱型断面となる)、鋳造製とすることで形状が自由に 決定できる特長を持つ(3)「C型鋳造継手構造」について検 討を行った。 それぞれの格点構造のモデル図と特徴を Table 1 に示す。

Table 1 Joint structures

3. FEM 解析

3.1 解析方法

対象とした格点構造は4本の斜材を有するDK(Double K)型継手構造である。対称性を利用して断面の中心線よ り半分の1/2対称モデルを作成し三次元弾性微小変位解析 を行った。解析プログラムはI-DEASを使用した。拘束条 件については、Table 2に示すように弦材の片側を固定端 とし、もう一方の端部の回転を固定したまま長手方向を自 由にした。載荷条件については、2章の影響線載荷で算出 された値を用いて、(1)「斜材軸力モデル」は斜材に161tf の圧縮力と引張力を加えている。(2)「弦材軸力モデル」は、 弦材に421tf の引張力を加えた。荷重の与え方は、断面内 に均等に載荷するため載荷断面の中心点から断面のすべ ての節点に剛体棒で接続し、その中心点へ載荷荷重を与え ている。拘束方法についても同様の方法を採用した。解析 モデルの要素は、ソリッド要素を用いた。また、溶接につ いて突き合わせ溶接の場合は面的に要素を付け合わせ、隅 肉溶接の場合は線的に要素を接合している。このため、隅 肉溶接の解析結果は若干高めの値が算出され安全側の評 価値となる。

Table 2 Boundary conditions

3.2 応力集中率

弦材軸力モデル,斜材軸力モデルの斜材と弦材を4つの 部材に対して梁理論で求められる「公称応力」の値を計算 する。これらの値に対し3.1節で示したFEM解析により 求まる局所に発生する最大引張応力値を算出した。この最 大引張応力値を公称応力値で割ったものを「応力集中率」 とした。

3.3 解析結果

解析値の検討は疲労耐久性への影響が大きな引張応力に 対して行った。解析の結果,弦材軸力による最大応力発生 箇所は,(1)パイプ分岐継手構造の相貫線の弦材との交点

(Table 3), (2) ガセット式継手構造の添接版の弦材との 溶接線の端部(Table 4), (3) C型鋳造継手構造のカバー プレート張出し両端部(Table 5),に発生することがわか った。一方,斜材軸力による最大応力発生箇所は,(1)パ イプ分岐継手構造の相貫線上(Table 3),(2)ガセット 式継手構造の添接版と斜材の接合部(Table 4),(3) C型 鋳造継手構造のカバープレート張出し中央部相関線付近 (Table 5),に発生することがわかった。それぞれについ て結果をまとめたものを Table 8 に示す。

Table 3 Results of diverged pipe joint

	Chord axis force	Diagonal axis force
Contour (tension)	Maximum value k=2.11 (21.5 kgf/mm ³)	Maximum value k=2.91 (27.6 kgf/mm ²)
S.C.F ^{**} (k) 2.11		2.91
Cause	Shape	Shear stress

%Stress concentration factor

	Chord axis force	Diagonal axis force	
Contour (tension)	() Maximum value k=3.16 (32.3 kgf/mm²)	Maximum value k=2.03 (19.2kgf/mm ³)	
S.C.F ^{**} (k) 3.16		2.03	
Cause	Edge of splice ²⁾	Joint of splice	

Table 4 Results of gusset joint

Table 5 Results of C-type cast joint

3.4 筒型鋳造格点構造

Table 3 で示すようにパイプ分岐継手構造の弦材軸力に 対する応力集中率kは,斜材パイプが薄板であり弦材軸方 向の剛性が小さいためにk=2.11と比較的小さい値になる。 反対に斜材軸力に対しては,斜材間の伝達がパイプの薄板 内で行われるためにk=2.91と比較的大きな値となる。一 方,C型鋳造構造の弦材軸力に対する応力集中率kは,下 弦材を覆うカバープレートの先端の隅肉溶接部から主とし て応力が伝達されるためにk=3.13と大きな値になる,斜 材軸力に対する応力集中率kは鋳造内部で斜材軸力の伝達 が行われるためk=2.17と比較的小さな値になる。これら の結果に基づき,パイプ分岐型継手構造とC型鋳造構造, 双方の利点を活かした筒型鋳造構造を提案した。具体的に は、

- (1) 斜材軸方向の剛性低減のため、内部を中空にした。
- (2) 応力集中を緩和するため、相貫部に曲線をつけた。
- (3) せん断力による応力集中が発生しやすい,相貫部の板 厚を確保した。
- (4) 弦材と斜材で応力が伝達される部分の溶接部は、あらかじめ弦材との設置面に開先を設けた。

また(1)の中空化およびカバープレート部の省略により, 鋳鋼の使用量を低く押さえることが可能となり,経済性も 兼ね備えた構造と言える(Table 6)。

3.5 継手構造解析結果

筒型鋳造継手構造に対し,他の継手モデルと同様の解析 を行った。そのときのコンター図と応力集中率を Table 7 に示す。また,すべての格点に対する応力集中率をまとめ

たものを Table 8 に示す。

Table 8 により予想通り現在軸力,斜材軸力のいずれかの荷重に対する応力集中率が小さくなることがわかる。

Table 7 Results of cylindrical cast joint

	Chord axis force	Diagonal axis force	
Contour (tension)	⟨¬ Maximum value k=1.57 (16.0kgf/mm²)	Maximum value k=1.91 (18.1 kgf/mm²)	
S.C.F [*] (k)	1.57	1.91	
Cause Welded shape		Welded shape	

Table 8 Summary of FEM results

	Diverged pipe joint	Gusset joint	C-type cast joint	Cylindrical cast joint
Chord axis force	2.11	3.16	3.13	1.57
Diagonal axis force	2.91	2.03	2.17	1.91

4. 疲労試験

4.1 試験方法

斜材に丸鋼管を採用できない,ガセット継手構造の実験 的な検討は今回行わないこととし,(1)パイプ分岐型継手 構造と,(2)C型鋳造継手構造および(3)筒型鋳造構造に対 して疲労試験を行った。

下弦材の軸力が卓越する格点部と,斜材の軸力が卓越す る格点部の2箇所を対象に,試設計橋の約2/3縮尺モデル のK型継手疲労試験体を製作した。鋼管材には一般構造用 鋼SS400相当の鋼管材STPG410を用い,鋳造格点には鋳 造材SCW410を用いた。

弦材軸力疲労試験の要領を Fig.3 に,斜材軸力疲労試験 の要領を Fig.4 に示す。弦材の軸力試験では,下弦材の両 端をピンジョイントを介して軸方向荷重を載荷した。斜材 の軸力試験では,弦材の一端とそれに近い側の斜材をピン ジョイントを介して反力壁に取り付け,もう1端の斜材に 片振りの圧縮荷重を載荷した。

疲労試験は、200 トン油圧サーボ式疲労試験機を用い、 繰り返し速度 0.5~3Hz の正弦波形一定荷重振幅で行った。

Fig.3 Chord fatigue experiment

Fig.4 Diagonal fatigue experiment

4.2 試験結果

4.2.1 き裂の発生位置

弦材軸力疲労試験では、C型鋳造試験体のみにき裂が発生し、パイプ分岐型、筒型鋳造試験体では、き裂が発生しなかった。C型鋳造試験体には、格点部の弦材側の溶接止端部からのき裂およびルートき裂の2種類が発生した。ルートき裂は、寿命延長を狙って止端仕上げを行った結果、のど厚が不足したために発生したものと推測される。

斜材軸力疲労試験では、パイプ分岐型、および C 型鋳造 試験体にき裂が生じ、筒型鋳造構造ではき裂が発生しなか った。パイプ分岐構造のき裂は斜材同士のラップ溶接部に 生じ、C 型鋳造構造では、鋳造格点と引張斜材の突き合わ せ溶接部でき裂が発生した。

4.2.2 疲労寿命

弦材軸力疲労試験結果を Fig.5 に,斜材軸力疲労試験結 果を Fig.6 にそれぞれ示す。破断寿命 Nfは,止端き裂では き裂長さが主材断面円周の約 1/2 に達したときの荷重繰り 返し数とし,ルート破断に関しては,き裂が表出した時点 の荷重繰り返し数とした。縦軸は,弦材軸力疲労試験では 弦材の公称応力,斜材軸力疲労試験では,荷重を載荷して いる斜材の公称応力である。図中矢印のついた点は,き裂 が発生しなかった試験体の試験終了時の荷重繰り返し数を 示す。また,図中には疲労設計曲線¹⁾を併せて示した。

これらの結果をみると弦材軸力疲労試験では、パイプ分 岐構造、筒型鋳造構造の疲労寿命が長く、斜材軸力疲労試 験では、C型鋳造構造と筒型鋳造構造の疲労寿命が長い。 すなわち、荷重形式に関らず筒型鋳造構造は疲労強度に優 れており、このことは FEM 解析で得られた応力集中率の 結果とも定性的に一致する。

Fig.5 Results of chord fatigue experiments

Fig.6 Results of diagonal fatigue experiments

4.3 格点構造の疲労強度評価

パイプトラス橋の設計においては、格点部の疲労強度評価が不可欠である。パイプ構造の疲労強度評価では、ホットスポット応力またはひずみを基準とした評価が有効であり、海洋構造物における検討をベースに格点部の疲労強度評価法が各種提案されている 1).4)-6)。しかしながら、道路

橋ではそれらとは寸法が異なる上,今回新たに提案した筒 型鋳造格点等に対しては,それらの評価法が適用できるか どうかも明らかでない。

そこで、上述の代表的な格点部の疲労設計法が、適用可 能であるか検討を行った結果、JSSC のホットスポット応 力範囲を用いる方法¹⁾が最も適当であると判断された。 JSSC の方法により、今回の試験を整理した結果を Fig.7 に示す。提案した筒型鋳造構造についても、JSSC の方法 により実構造における疲労強度評価が可能であると判断で きる。

Fig.7 Summary of fatigue experiments

5. おわりに

FEM による解析および,継手部を対象にした試験体に よる疲労試験により以下のことがわかった。

(1) パイプ分岐型継手構造は弦材軸力の載荷に対して疲労 強度が高く,斜材軸力に対して比較的疲労強度が低い。(2) C型鋳造格点構造は,斜材軸力の載荷に対して疲労強度

が高く、弦材軸力に対して比較的疲労強度が低い。

(3) 筒型鋳造構造は,弦材軸力および斜材軸力のいずれに対しても優れた疲労耐久性を示す。

(4) 疲労強度の評価について解析的検討に得られた応力集 中率の大小と実験的に得られた疲労強度の大小は整合して いる。

(5) 筒型鋳造構造の疲労強度は, JSSC のホットスポット 応力範囲を用いる方法により評価できる。

参考文献

- 1) 日本鋼構造協会編. 鋼構造物の疲労設計指針・同解説. 1993.4.
- 保坂ほか.トラス格点部合理化構造の検討.構造工学論文集. Vol.46A(2000.3)
- 3) 諸戸健一ほか. "カバープレートの疲れ強さと疲れ許容応力度". 構造工学論文集. Vol.33A. pp.403-410(1987).
- 4) ANSI/AWS, D1. 1-81, American Welding Society, 1981.
- 5) Iida, K. et al. A Proposal for Fatigue Design Procedure for Offshore Tubular Connections , IIW Doc. XIII-1020-81, 1981.
- 飯田國廣ほか."海洋構造物鋼管継手の疲労設計法の一試案".
 日本造船学会論文集.第148号,1980.

<問い合わせ先>

基盤技術研究所 都市工学研究部

Tel. 044 (322) 6337 栗原 康行

E-mail address : ykurihar@lab.keihin.nkk.co.jp