多機能画像処理プロセッサ「KL5A20018」

徳永 隆彦*2 今井 賢朗*3 清水晃一郎*3

Multi-function Image Processor “KL5A20018”

Haru-hiko Toku-yasu Takao Imai Kou-ichirou Simizu

1 はじめに

近年のOA機器の進歩はめざましいものであり、より一層の機能化、小型化、複合化が進んでいる。これに伴い、それらを構成するLSIの性能向上に対する要求もより增大してきている。このような中、著者らは、ファクシュミ、イメージスキャナ等のシステム機器を対象とした高機能な画像処理を容易に実現可能とした画像処理専用のLSI「多機能画像処理プロセッサ／KL5A20018」を開発したので、その概要を紹介する。

2 機能仕様概要

多機能画像処理プロセッサ／KL5A20018は、約450種々の25～250%の縮小／拡大処理、7ビットの階調変換などをはじめとした多機能的な画像処理機能を兼持しており、高画質化処理を実現することができる。また、外付けSRAMを画像メモリとして使用するための制御回路および同期信号生成回路を搭載している。機能仕様をTable 1に、機能ブロック図をFig. 1に示す。

<table>
<thead>
<tr>
<th>Table 1 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency</td>
</tr>
<tr>
<td>PIX processing frequency</td>
</tr>
<tr>
<td>Input PIX data</td>
</tr>
<tr>
<td>CPU I/F</td>
</tr>
<tr>
<td>γ correction RAM size</td>
</tr>
<tr>
<td>Dither RAM size</td>
</tr>
<tr>
<td>Input paper size</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Input level</td>
</tr>
<tr>
<td>Output level</td>
</tr>
<tr>
<td>Operating voltage</td>
</tr>
<tr>
<td>Package</td>
</tr>
</tbody>
</table>

Fig. 1 Block diagram

**平成6年1月26日原稿受付　**
LSI事業部 開発・設計開発品開発室 主査（課長）
LSI事業部 開発・設計開発品開発室 主査（課長）
3 画像処理機能概要

本製品は次の10種類の画像処理機能を有しており、目的や用途に応じて使い分けることができる。以下に各画像処理機能の概要を述べる。

(1) シューティング補正

入力画像データには、照明光源の周辺部の光量差、あるいはレンズ周辺補正により発生するシューティング差、さらには読み取りディスクの画素間の特性ばらつきに依存した画質のばらつきが含まれている。

シューティング補正は、このようなシューティング差、および読み取りディスクの画質ばらつきを補正するものである。

(2) カンマ補正

入力画像データの濃度曲線分布をデジタル的に補正する。この補正により入力画像データの濃度、階調の変換を自由に行う。

(3) AGC補正

例えば灰色の下地に黒色的文字が書かれている原稿を読み取った場合、下地の灰色がそのまま再現されると、文字が非常に読みづらい。

そこでこの下地の灰色を検出し、白色になるまで濃度を下げるにより、文字の判読を容易に行う。

(4) 輪郭強調処理

二次元(3×3)の高反発フィルター処理により、濃度の低い雑相の再現性を向上させる。この処理は、断面の小さい文字の多い原稿の読み取りにおいて、特に有効である。

(5) 平滑化処理

二次元(3×3)の平滑化フィルター処理により、画質を整音、あるいは网点原稿の网点パターンを除去し、滑らかに画像を再現する。

(6) 像域判別処理

文章と写真(イメージ・データ)が混在した原稿を読み取る際、この判別処理により写真領域と文章領域の判別を行い、それぞれの領域に対して輪郭強調処理及び平滑化処理を行う。

判別手法は、二次元(3×3)の濃度勾配検出フィルターにより、判別を行おうとする画素とその周辺画素との濃度勾配を検出し、濃度勾配の大きい場合は、写真領域の画質を保持し、濃度勾配の小さい場合は、写真領域の画質を保持する。

(7) 原始拡大

画像処理前に後での濃度誤差を局所的に拡大させ、最小道徳により鮮明な画像を再現する。

(8) ディザデザイン

4×4または8×8のマトリックスによる組織的データ処理方法により周囲を再現する。

この処理は平滑化処理を行った画像データに対して行うとさらに効果的である。

(9) 際時二値化処理

任意に設定された閾値より、入力画像データの濃度が高ければは黒、逆に濃度が低ければ白の二値化データとして出力する。

(10) 縮小／拡大処理

主走査方向の縮小および拡大を補間処理により1%単位で行う。

主走査方向の縮小は、縮小率に応じて原稿送りスピードを通常より遅くする、あるいは必要なラインの画像データを間引くことで実現する。

一方、主走査方向の拡大は、拡大率に応じて原稿送りスピードを通例より速くする、あるいは必要なラインの画像データを繰り返し出力することで実現する。

4 応用例

Fig. 2にシステム構成図を示す。KL5A 2001Bは、イメージセンサ、A/Dコンバータからの8 ～ 5ビットの入力画像データに対し各種の画像処理を行い、二値化データを圧縮／伸張またはCPUバスへ出力する。

5 おわりに

画像処理専用のLSIである多機能画像処理プロセッサKL5A 2001Bの概要を紹介してきたが、今後も市場のニーズに応じた製品を開発していく予定である。

～45～

＜問い合わせ先＞
川崎製鉄株式会社 新製事業部 LSI事業部
東京都千代田区内幸町2-2-3 日比野国際ビル
TEL 03-3597-4619 FAX 03-3597-3634