Abridged version

KAWASAKI STEEL TECHNICAL REPORT
No.27 (November 1992)
Hot-Rolled, Cold-Rolled and
Surface Coated Steel Sheets

and Electronics and Instrumentation

Development of General-Purpose Internetworking Unit

Tetsuo Ogawa, Norimasa Hattori, Katsumi Minegishi, Takeshi Ueda, Toshiyuki Aikawa

Synopsis :

A general purpose internetworking platform which permits the interconnection of any
set of networks has been developed by Kawasaki Steel. The platform consists of several
network interfaces with an OS. The OS is designed to realize concurrent processing of
protocols by a dynamic task switching architecture based on features of protocol
processing. A high-level protocol generating language was also developed, thereby
improving protocol development. It is expected that a higher level of network
integration can be realized by using this platform in effective, strategic internetworking

applications.

(c)JFE Steel Corporation, 2003

The body can be viewed from the next page.

KAWASAKI STEEL TECHNICAL REPORT Ne. 27 November 1992

Development of General-Purpose Internetworking Unit"

A

Tetsuo Opawa
Stall Muanager,
Research & Develop-
ment Dept., Integrated
Systems & Electron-
ics Div.

Norimasa Hattori
Stalf Assistant
Munager, Research &

Katsumi Minegishi
Staff Assistant
Manager, Research &
Development Dept.,
Inlegrated Systems &
Electronics Div.

Deveiopment Dept.,
Integrated Systems &
Electronics Div.

oi

Toshiyuki Aikawa
Integrated Systems &
Electronics Dept.,
Kawasaki Steel Systems
R&D Corp.

Takeshi Ueda
Research & Develop-
ment Depl., Integrated
Systems & Electron-
ics Div.

1 Introduction

The concept of strategic information system (SIS) has
been widely discussed in recent years, and is now
becoming a reality. The background of this trend
includes changes in social paradigms and technical
innovation. To realize a highly information-oriented
society, information systems have been actively adopted
in various fields, and the level of network construction
has shifted from information systems within individual
companies to the horizontal development of informa-
tion networks among companies, and from intra-
industry to inter-industry networks. The technical pro-
gress represented by the standardization of open sys-
tems interconnections (OSE), construction of integrated
servides digital networks (ISDNs), and sharing of
resources by local area networks (LANs) provides the
network infrastructure indispensable to the realization

* Originally published in Kawasaki Steel Giho, 24(1992)1, 20-25
70

Synopsis:

A general purpose internetworking platform which per-
mits the interconnection of any set of networks has been
developed by Kawasaki Steel. The platform consists of sev-
eral network interfaces with an OS. The OS is designed to
realize concurrent processing of protocols by a dynamic
task switching architecture based on features of protocol
processing. A high-level protocol generating language was
also developed, thereby improving protocol development. It
is expected that a higher level of network integration can
he realized by using this platform in effective, strategic
internetworking applications.

of §18s."%

In view of these developments, Kawasaki Steel’s Sys-
tems and Electronics Div. selected “connectivity” and
“manageability” as core techniques for development in
its network integration business. The term “connectivity”
refers to the capability of linking devices and/or net-
works, which provides the basis for horizontal network
expansion. “Manageability” means the capacity of main-
taining unified management over the different types of
machines, different vendors, and different networks
which are integrated for horizontal network expansion.
The authors developed a general-purpose internetwork-
ing unit as a means of realizing these two technical
capabilities.

This report describes the techniques of the internet-
working operating system (0S) which supports the
general-purpose internetworking unit.

2 Requirements for General-Purpose
Internetworking Unit

The information system discussed here is composed
of various makes and types of information equipment.
The networks which connect this equipment are also
diverse, However, the lack of inter-operability armong
these systems is a major obstacle to progress in the
horizonial development of information systems among
companies and among industries. Furthermore, al-
though the expansion of networks increases the neces-
sity of integrated management, it is at present very diffi-
cult to apply an integrated management architeclure;
this is also an obstacle to progress in the horizontal
development of information systems.

On the basis of a concept of “uny-to-any” linkage of

equipments and networks, which is refered to as inter-

networking, and management of this internetworking

system, the authors began development of a general-
purpose internetworking unit.

From the viewpoint of business development, the fol-
lowing two features were required in this unit:

(1) Must contribute to timely commercialization in line
with business development.

(2) Must provide the basis for future business expansion.

The following were considered necessary conditions
for meeting these requirements:

(1) Must be compatible with various communication
interfaces, for example, [EEE (Institute of Electrical
and Electronics Engineers) 802.3, V. 24, X. 21, RS-
232C, and ISDN, and with those developed in the
future.

(2) Must permit loading of various protocols with the
communication interfaces in (1), and must be com-
patible with new protocols.

(3) Must make possible improve the productivity in the
development of protocol processing programs.

(4) Must permit loading of application systems such as
network management systems,

To satisfy these conditions, the following methods
were adopted:

(1)} Muitiprocessing method using multiprocessor archi-
tecture, with a processor board for each communi-
cation interface, aimed at the distribution of func-
tions and loads.

(2) Multitasking method for realizing a multi-protccol
environment in a single processor, and for executing

Bus

additional applications such as network management
simultaneously with communication.

(3) Loading of an internetworking OS as a means of
solving interprocess communication/synchromniza-
tion, exclusion control, and other problems peculiar
to concurrent processing, which are techniques
forming the basis of (1) and (2).

{4) High-level protocol generating language for improv-
ing the efficiency of protocol processing program
development.

3 Configuration of General-Purpose
Internetworking Unit

3.1 Hardware Conhguration

The general hardware configuration of the general-
purpose internetworking unit for realizing the distribu-
tion of functions and loads is shown in Fig. 1. CPUs arc
mounted on the main board for control of the entire
unit and each of the interface boards which control
communication at each interface. These CPUs are
linked by a bus. The CPUs on the boards share the sys-
tem RAM on the main board and exchange information
using this RAM. Functions are distributed to each
board, and the distribution of loads is made possible by
using muitiple boards of the same kind.

3.2 Internetworking OS

Figure 2 shows the functional structure of the inter-
networking OS developed in this work to realize effi-
cient multitasking of protocol tasks.

Main board

Disk
controiler

System
raw K2

LSl for _
cammunication

|EEE 802 3 board

X.21board

L~

ISDN board

Fig. | Hardware block diagram of internetworking unit

71

Q5 services

Timer
managemenl

Kernel

Task
management

\Memmy management

/0 o
management

File
management

)

Interrupt handling

Interpreter

Application tasks

Mailbox

Buftfer
management

Fig. 2 Internetworking-OS functional structure

A scheduler is provided in the kernel portion to
process multiple tasks. OS services for managing
resources such as the buffer and timer run around the
scheduler, Application tasks run on this OS5, but OS
services are provides for protocol tasks through a
protocol-generating language interpreter.

3.3 Application

The following processing applications can be run on
the internetworking OS:
(1) Protocol processing
(2) Device monitoring
(3) Diagnostics
(4) Fault processing
(5) Exchange of routing information
(6) Network management

A high-level protocol generating language was devel-
oped to ensure efficient generation of protocol proces-
sing programs, which are the main application of this
unit.

4 Protocol Processing and Internetworking OS

4.1 Model of Protocol Processing

Figure 3 shows the model of protocol processing,
which is mainly executed by the internetworking unit.
The processing steps are outlined below.
{1) Reception Processing

72

Data is physically received by a communication LS]
(external processing) and received data is accepted
and forwarded to the forward processing in case of
receiving completion interrupt from the communi-

LU

—— Receive
‘Receive data {exterior)
‘Move data to intenor buffer {interiorn)
— Forward U
-Analyze data {interiar)
‘Request to send {interiort
— Send U
-Prepare data (interior)
-Send data (exterior)
~— Synchronize U
‘Set watch timer linterior}
‘Check timeout {exterior)

U

Fig. 3 Protocol process model

KAWASAKI STEEL TECHNICAL REPORT

cation LSI (internal processing).
(2) Forward Processing
The received data is analyzed and, if it is to be
forwarded, a transmission request is made to the
destination protocol-processing task (internal proces-
Sing).
(3) Transmission Processing
Data is prepared for transmission and the communi-
cation LSI is instructed to send the data (internal
processing); also includes the transmission of the
data by the communication LSI (external pro-
cessing).
(4) Synchronization Processing
This function sets a monitoring timer and then
waits for an interruption in the turn either of the
receipt of a receiving acknowledgment frame from
the sender or expiration of the timer (internal pro-
cessing), and further includes acknowledgement of
the expiration of the timer (external processing).
During each of the processing steps (1) to (4) above,
it is necessary to continually observe the condition of
the circuit and respond appropriately when major
changes occur.

4.2 Characteristics of Protocol Processing

From the model described above, the following two
points can be mentioned as characteristics of protocol
Processing;

{1) The proportion of external processing is high.
(23 A variety of error processing modes are necessary.

External transmission processing by a communication
LSI generally requires much more time than processing
within the CPU due to its dependence on the external
transmission speed. The time to expiration of the syn-
chronization timer is also sufficiently longer than the
time required for internal processing. Protocol proces-
sing is characterized by a very high proportion of exter-
nal processing, but because protocol process tasks wait
for interruptions during this external processing, the
execution of other protocol process tasks or other appli-
cation tasks is possible with the CPU (Fig. 4).

Task A o — —

Task 8 H — = —

Task C

cruU — —

s ¢ internal (on CPUY

s external {on LSI)
Fig. 4 Multi-tasking of protocol tasks

No. 27 November 1992

Because protocol processing normally has external
relations with the transmission media and destination
end users, an external response Lo various exceptions is
necessary. These exceptions are indicated to the proto-
col process as errors by interruptions caused by external
functions. When these interruptions occur, the protocol
process must analyze the cause of error and execute
appropriate processing to cope with it. However, error
analysis is very complex because the causes of the
errors are diverse.

The internetworking S was developed to ensure effi-
cient concurrent processing of the protocol process task
groups with these characteristics. The most distinctive
feature of this OS is a high-speed task switching method
based on a simple control structure, as described below.,

5 Structure of Internetworking OS
5.1 Dynamic Task Switching Method

The task switching method developed in this work to
efficiently realize the concurrent processing of protocol
process tasks is called here the dynamic task switching
method.

In general, a task undergoes a transition of status as
shown in Fig. 5. In the internetworking OS, a transition
to the state of waiting for an event does not occur;
rather, the task remains in the ready state while waiting
for the occurrence of an event.

Task switching in a conventional multitask OS is basi-
cally effected by the siatic task switching method by a
timer, and the task side is not aware of the timing of
task switching.>*® In contrast, in task switching in this
internetworking OS, the task itself dynamically deter-
mines the timing of task switching. Concretely, task
switching occurs when a task currently being excuted
autonomously issues a command to abandon its excu-

< R
Ready ET—— l: Wait :]
> e
T |

Fig. 5 Transition of task status

73

tion right. The task which has abandonead the execution
right transfers to the ready state and waits to acquire
the next execution right. Fundamentally, the execution
right is not transferred to another task unless the task
being executed abandons its right.

Section 6 describes how efficient concurrent proces-
sing of protocol tasks is realized on the basis of this
dynamic task switching method.

5.2 Task Status Queue

The only data structure used in realizing the dynamic
task switching method is a ready-state queue with a cir-
cular list structure.” The structure of this task status
queue is shown in Fig. 6. The queue comprises a series
of task control data structure items in the ready state
(task control blocks). Among the tasks forming this
queue, the task scheduler assigns the execution right to
the task indicated by the execution pointer (task B in
upper part of Fig. 6). When a command to abandon the
execution right is issued by the task being executed, the
ready-state queue rotates, the execution pointer indica-
tion changes, and the task control block being executed
moves to the end of the queue. As a result of the rota-
tion, the task corresponding to the task control block
indicated by the execution pointer {task C in lower part
of Fig. 6) acquires the execution right, Rotation of the
queue is possible with only rewrite processing of the

TCB pointer of currently executing task

Task control blocks{TCB)

> > > —_]
Task A Task B Task C Task D
Task switching
",
> —_— » —_
Task A Task B Task C Task D

Fig. 6 Snapshot of TCB ready queue linkage in rota-
tion fashion

T4

execution pointer; thus, only simple processing is need-
ed in preparation for task switching,

6 Concurrent Processing of Protocol Process Tasks

6.1 Event-Waiting Operation

In the event-waiting operation with a general-purpose
OS, the general practice is that waited events are regis-
tered in the OS, and a transition to the event-waiting
state oceurs.®® When an event occurs, the OS analyzes
its cause and switches the task in the event-waiting state
to the ready state. The load of the OS is heavy because
it executes both the processing for the transition of task
status and the check of the occurrence of events.

In the dynamic task switching method, the OS
merely gives the execution right to a task in the ready
state in the appropriate order and does not distinguish
whether a task is waiting for events or not. The waiting
task itsell checks the occurrence of events and, when
events do not occur, instantaneously abandons the
execution right.

In protocol processing, the following eventwaiting
states occur:

(1) Completion of Transmission (Transmission Proces-
sing)
After the protocol process task issues a data trans-
mission command to the communication LSI, it
waits for the interruption at the completion of
transmission by the LSI.

(2) Data Receiving (Receiving Processing/Synchroniza-
tion Processing)
The protocol process task issues a data receiving
command to the communication LSI in expectation
of the arrival of incoming data. In particular, after
the interruption at the completion of transmission
by the LSI, the protocol process task wails for the
receiving of receiving acknowledgment data sent
from the sender in order to synchronize communi-
cations.

(3) Communication Error
During the execution of external processing, the
protocol process task checks whether the continua-
tion of communication has become impossible due
to external conditions.

In (1) and (2) above, the monitoring timer is started,
and waiting covers both the interruption from the LSI
and that from the timer. In both cases, the event-
waiting state occurs immediately after the command
from the protocol process task side. In contrast, in case
(3), continual monitoring is necessary because external
conditions such as transmission media change con-
stantly; in this case, the event-waiting state can be
considered continuous.

In the dynamic task switching method, efficient con-
current processing is possible with tasks having the fol-
lowing two differing types of event-waiting states:

KAWASAKI STEEL TECHNICAL REPORT

{(_P_Lq LEI_fir (ornrr.w;nlcat_u?“nj

Receive Raceive

{Waitevent) =

Data
Receive complete?
Error?
Event
- —— ——
{Signal change)
Receive complete?
Error?
Event
- -

(Line status change)

Receive complete?

Error?

Complete
e

Receive complete?

Move data ta
interior buffer

Fig. 7 Event wait mechanism between CPU and
external events under “receive” semantics

(1) Discretely occurring and predictable event-waiting
states
(2) Continuous event-waiting states
The concept for the realization of this is shown in
Fig. 7.

6.2 Swilching Overhead

Task switching involves the following two types of
overhead:
(1) Overhead for state transition from the execution state
(2) Overhead for event processing

These two types of overhead are discussed in the
following.

6.2.1 Overhead for state transition from execution
state

When a transition from the execution state (o the
event-waiting state occurs, the waited event is regis-
tered. When many types of waited events exist, as with
protocol process tasks, overhead is relatively large due to
the large volume of registery processing required.

When a transition from the execution state to the
ready state occurs, however, this type of processing ts
unnecessary, and the OS merely removes the execution
right from the task. Therefore, the overhead for state

No. 27 November 1992

transition in waiting for events in the dynamic task
switching method is smaller than that during event
waiting with a conventional OS.

6.2.2 Overhead for event processing

With the conventional (static switching) method,
tasks are switched to the event-waiting stale when an
incoming event is registered. The OS checks the occur-
rence of events, but until an event occurs, the event-
waiting task is not in the ready state and cannot obtain
the execution right. In the dynamic task switching
method, however, because the task checks the occur-
rence of events, the execution right is also transferred
to an event-waiting task. It might seem that the effi-
ciency of concurrent task processing is higher when the
conventional method of transition to the event-waiting
state is applied, because there is a corresponding
decrease in the number of tasks in the ready state.

However, when the check of event occurrence and
the subsequent initiation of processing are considered, it
can be seen that a considerable load is placed on the
035, which must perform all this processing. It is also
possible that multiple tasks are waiting for one event,
and that multiple processing operation should be initiat-
ed, Event processing is very complex in an environment
in which there is a strong possibility that multiple tasks
are wailing simultaneously for multiple events.

In contrast, in the dynamic task switching environ-
ment, the task itself checks the occurrence of events.
Because the task side determines the processing to be
initiated after an event occurs and the classes of events
to be checked, processing can be performed with rela-
tively high efliciency after events occur, The OS, provid-
ed it has the means of informing all tasks of the occur-
rence of events, need only assign the execution right to
tasks, and this processing is also simple. Therefore,
processing overhead can be held to a minimum.

6.3 Assurance of Real-Time Characteristics

Because the timing of task swilching is determined by
the task side in the dynamic task switching method, the
possibility remains that the OS may become uncontrol-
lable. In other words, if a task refuses to abandon the
execution right, the system becomes inoperable. As a
remedy for this, this OS is equipped with a static task
switching function, which operates al relatively long
intervals, and a means of allowing the user to order the
abandonment of the execution right,

When an application task with a high proportion of
internal processing is mounted, the timing of task
switching should be taken into consideration during the
generation of an application program. It is recommend-
ed that the timing of task switching be selected within a
range which ensures the real-time characteristics of pro-
tocol processing when a command for the abandonment
of the execution right is used.

However, because the real-time characteristics of pro-

75

tocol tasks are assured by static task switching even in
the worst case, the operation of the system can meet
the requirements of the protocol. To ensure more effi-
cient concurrenl processing, it may be necessary to
make more eflective use of commands for the abandon-
ment of the execution right.

7 High-1Level Protocol Generating Language

A high-level protocol generating language is a lan-
guage developed so that the programmer need not be
aware of the complexity of the protocol processing or
the concurrent processing of protocol process tasks
when performing programming in the development of
protocol processing programs. The programmer can
gencrate protocol processing programs merely by
arranging functions according to the flow of protocol
processing.

The execution of dynamic task switching for efficient
concurrent processing of protocol tasks, as mentioned
above, is also hidden in the semantics generated by a
high-level language interpreter, In other words, in the
semantics of a high-level protoco! generating language, a
command for the abandonment of the execution right
is implicitly included within a command for external
operation waiting events, and task switching processing
is initiated automatically. As a result, the generated
protocol processing program provides high efficiency
concurrent processing even if the programmer is not
conscious of efficiency.

This high-level protocol generating language makes
possible the expandability of the general-purpose inter-
networking system and improvement in the efficiency
of protocol generation.

8 Conclusions

Kawasakt Steel’'s Systems and Electronics Div. devel-
oped hardware, an internetworking OS, and a high-level
protocol generating language as the platform of a
general-purpose internetworking unit as a powerful tool
for future network integration business.

76

This unit is intended to provide the interoperability
of any set of networks from the view of connectivity
and manageability. The unit itself is composed of com-
munication interface boards suitable for various types of
networks and a main board for the overall control of the
unit, Under the internetworking OS of the CPUs
mounted on the boards, various kinds of protocol pro-
gram and other application programs run as tasks.

The following results were obtained in the develop-
ment of this unit;

(1) By adopting the dynamic task switching method,
processing efficiency was improved in the concur-
rent processing of protocel process tasks with a high
proportion of external processing and various classes
of waited events.

(2) 1t has become possible for protocol processing pro-
gram development personnel to develop programs
with a high concurreni processing efficiency in a
short time without being conscious of the details or
concurrency of protocol processing.

The authors plan to mount various protocois and pro-
tocol conversion functions on this unit in the future,
using the unit as a tool for flexibly meeting customer
needs. Furthermore, a higher level of network integra-
tion will be possible by mounting applications such as a
network managemeni function on this unit.

References

1) H. Ishida, T. Tokuda and H. Tokuda: “Computer Network”,
(1986}, [Kyoritsu-Shuppan)

2) Y. Matsushita: “Computer Network”, (1983), [Baifukan|

3 A. 8. Tanenbaum: “Operating Systems: Design and Inple-
mentation”, (1987}, [Prentice-Hall]

4) M. J. Bach: “The Design of the UNIX Operating System”,
(1986}, [Prentice-Hall}

5} P. 1. Fortier: “The Design of Distributed Operating Sys-
tem”, (1988), [Addison-Wesley]

6) L. Bic and A. C. Shaw: “The Logical Design of Operating
Systems”, (1988), [Prentice-Hall]

7y A. V. Aho, J. E. Hoperoft and H. D. Ullman: “Data Strug-
ture and Algorithm”, (1983), |Addison-Wesley]

8) NEC Corp.: “RX616 kernel user’s manual”, (1989

9 OTC Corp.: “pSOS+ Series Software Summary”, (1988)

	★e27-070-076
	e27-070-076

