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Operation Guidance Technique of a Blast Furnace 
Using Data Science (Part 2)
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Abstract:
 In blast furnace operation under low percentage of 
reducing material, which intends to reduce CO2 emission, 
the furnace condition easily falls into unstable and in the 
worst case, serious trouble could occur. Therefore, it is 
important to operate the furnace with recognizing current 
condition. However, information from conventional sen-
sors or analysis with the models were not still enough. 
Accordingly, in JFE Steel, the cyber physical system of 
the blast furnace has been constructed, and the particle 
size measurement technique of  charging coke in real 
time, the prediction system of pig iron temperature based 
on blast furnace physical model, and furnace condition 
detection technique based on inner pressure data, have 
been developed as a guidance system based on the visual-
ized inner furnace conditions. These techniques contrib-
ute to keep continuous stable operation by presenting the 
guidance to the operator.

1.   Introduction

 The blast furnace is a process in which molten pig 
iron is produced by alternately charging coke and iron 
ore from the top of  the furnace while blowing blast 
from tuyeres arranged around the furnace hearth, and 
reducing the iron ore with the carbon in the coke. In 
the future, reduction of the reducing agent ratio will be 
required, as this is an effective means of reducing CO 2 
emissions.
 The term “reducing agent” refers to the coke 
charged from the furnace top and pulverized coal 

injected from the tuyeres. The amount of  reducing 
agents used in the production of 1 ton of pig iron in a 
blast furnace is called the reducing agent ratio (RAR); 
similarly, the amount of coke used in the production of 
1 ton of pig iron is called the coke rate. Coke functions 
as a spacer in the blast furnace, securing the upward 
flow of  the high temperature gas injected from the 
tuyeres in the blast furnace hearth, and also accelerates 
the reduction of iron ore by the heat generation accom-
panying the reduction reaction, thereby facilitating the 
discharge of pig iron and slag from the furnace.
 JFE Steel has applied a cyber-physical system (CPS) 
to its blast furnaces to maintain high efficiency opera-
tion of  the BFs under low RAR operation and avoid 
serious operational trouble. In blast furnace CPS, the 
sensor data acquired from the actual blast furnace are 
collected and analyzed, and a virtual blast furnace 
modeled on these data is implemented in cyberspace in 
real time. Introduction of the virtual blast furnace has 
made it possible to understand the state of operation in 
the blast furnace, which cannot be observed directly, 
and predict its future state. In addition to enabling sta-
ble operation by feeding back the results of  monitoring 
of blast furnace soundness and anomaly predictions to 
operational actions for the actual blast furnace, blast 
furnace CPS can also be expected to improve produc-
tivity by identification of process bottlenecks (Fig. 1).
 Recently, JFE Steel has developed more advanced 
versions of  the coke particle size meter for measure-
ment of  the coke particle size before charging, opera-
tion guidance based on hot metal temperature predic-
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tion, and permeability anomaly detection described in 
our previous report 1), and these technologies now form 
the basis of  the JFE Steel CPS blast furnace. This 
paper focuses on the further development and advance-
ment of these technologies.

2.   Coke Particle Size Meter

 The coke charged into a blast furnace includes vari-
ous particle sizes, but if  the ratio of small coke is exces-
sive, the furnace condition will become unstable due to 
constriction of  the gas flow paths between the burden 
materials. Conventionally, an offline size analysis by 
sieving (sieve analysis) of  coke sampled at the blast fur-
nace had been performed once or twice a week in order 
to control the tendency of the particle size distribution 
of the charged coke. However, because the particle size 
of  coke fluctuates with a shorter cycle, action to pre-
vent deterioration of  the furnace condition can be 
taken in advance if  increases in the percentage of small 
coke can be detected at an early timing. Therefore, JFE 
Steel developed a coke particle size meter which makes 
it possible to monitor the particle size distribution in 
real time.
 In our previous report 1), we showed that rough 
agreement between the tendencies of  the measured par-
ticle size distribution and the distribution obtained by 
sieving analysis is possible by applying a particle size 
measurement algorithm using a laser range finder and 
a particle size distribution correction technique. How-
ever, powdery coke (called coke fines) with a particle 
size of  less than 5 mm (-5 mm) adheres to the surface 
of coarser coke particles by way of moisture, making it 

difficult to measure the powder ratio by the conven-
tional laser range finder technique. Therefore, based on 
the physical phenomenon that adhering powder 
adheres by way of  moisture, we devised a new tech-
nique using the luminance of  camera images (image 
brightness), which is capable of measuring the powder 
ratio. By using a hybrid sensor configuration, in which 
a camera is added to the conventional laser range 
finder, it is now possible to calculate the particle size 
distribution of the entire particle size range.

2.1   Outline of Coke Particle Size Distribution 
Meter

 The sensor configuration and measurement flow of 
the particle size distribution meter are shown in Fig. 2. 
As mentioned above, the coke particle size distribution 
meter has a hybrid sensor configuration consisting of a 
laser range finder and a camera. The laser range finder 
is used to capture the surface profile of  the coke on the 
conveyer. The particles in the profile are then detected 
by image processing, and the particle sizes of  the 
coarse coke in each size range are calculated 1). Assum-
ing that the coke is spherical and its density is uniform, 
the particle size distribution, which is the weight per-
centage for each particle size, is calculated from each 
coarse coke weight calculated based on the particle size. 
The weight percentage of -5 mm powder in the particle 
size distribution is defined as the powder ratio. How-

Fig. 1 Schematic diagram of CPS blast furnace

Fig. 2  Sensor configuration and measurement flow of particle 
size distribution of coke
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ever, since there is a limit to the optical resolution of 
the laser range finder, the adhering powder was too 
small to measure with only the laser device. On the 
other hand, the resolution of  the camera alone is also 
inadequate. Therefore, this problem was solved by esti-
mation processing using the camera luminance, as 
described below. Calculation of the particle size distri-
bution of the entire particle size range was made possi-
ble by combining the information of these two sensors 
and correcting the particles size distribution statisti-
cally 1).

2.2   Principle of Powder Ratio Measurement

 The new measurement technique using camera 
luminance was devised based on the physical phenome-
non that the adhering powder adheres via moisture. 
Figure 3 shows the principle of  measurement of  the 
powder ratio of coke. Here,  represents the relation-
ship between the powder ratio and the moisture content 
of the coke obtained by manual analysis. The moisture 
content is calculated by the dry analysis method speci-
fied in the JIS method. As shown in , if  the moisture 
content of  the coke increases, the powder ratio also 
increases. This expresses the fact that the powder 
adheres more easily as the moisture content of the coke 
increases.  shows camera images of the measurement 
of  the coke surface in the case of  coke moisture con-
tents of  2 % and 10 %. It can be understood that the 
luminance of  the image decreases when the moisture 
content of  the coke increases. Generally, there are two 
types of  light reflection from objects, a diffuse reflec-
tion component and a specular reflection component. 
The diffusion reflection component is light which is 
scattered uniformly in all directions by the reflecting 
surface, while the specular reflection component is the 
light resulting from strong reflection of incident light in 
a specific direction. When the moisture content 
increases, it is known that the specular reflection com-
ponent becomes stronger at surfaces where the surface 

of the object is covered with water, and conversely, the 
diffuse reflection component becomes weaker 2). Since 
the camera primarily captures the diffuse reflection 
component, it is thought that image luminance, which 
is mainly caused by the diffuse light component, will 
decrease if  the moisture content increases.
 Using the relationship of the above-mentioned two 
types of reflected light, the powder ratio was estimated 
from the coke images captured by the strobe light and 
camera system.

2.3   Online Actual Machine Test

 In order to verify the measurement principle using 
coke charged at an actual blast furnace, a camera was 
installed at the coke conveyor of  West Japan Works 
(Kurashiki District) No. 3 blast furnace, and an actual 
machine test was conducted. For comparison, the 
moisture content values of  the existing neutron mois-
ture meter were also collected, considering the possibil-
ity that the powder can be measured by way of  the 
moisture content. Here, the neutron moisture meter is a 
device in which neutrons irradiated from a neutron 
source are partially transmitted through the coke in the 
raw material hopper and are reflected corresponding to 
the moisture content, the reflected neutrons are 
detected by a detector, and the moisture content is then 
calculated from the amount of reflected neutrons.
 Figure 4 (a) shows the relationship between the 
powder ratio obtained by sieve analysis and measure-
ment camera luminance, and (b) shows the relationship 
between the powder ratio and the moisture content val-
ues obtained with the neutron moisture meter. As 
shown in Fig. 4 (a), it was found that the powder ratio 
can be measured in real time from image luminance 
with a coefficient of determination of the powder ratio 
and luminance of  R 2 = 0.61 and a standard deviation 
of error of σ  = 0.15 %. The error of the primary evalu-
ation data during the test period relative to the fluctua-
tion of  the powder ratio obtained by sieve analysis 
during normal operation was quite small, confirming 
that the camera luminance technique has sufficient 

Fig. 3 Measurement principle of powder ratio of coke Fig. 4 Correlation between powder ratio and each index
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accuracy for application to blast furnace operation.
 As shown in Fig. 4 (b), measurement with a coeffi-
cient of  determination R 2 = 0.36 and standard devia-
tion of error σ  = 0.20 % was also possible by using the 
neutron moisture meter, but accuracy was higher with 
the technique using camera luminance. Considering the 
phenomenon that powder adheres via moisture, a tech-
nique based on surface moisture is considered to be 
suitable for measurement of the powder ratio, since the 
moisture which contributes to powder adhesion is sur-
face moisture, and not the moisture content in the inte-
rior of the coke. According to the principle of the neu-
tron moisture meter, neutrons permeate through the 
coke, which means that the meter measures internal 
moisture in addition to surface moisture. In contrast, 
because the camera captures the reflection of  visible 
light, camera luminance is only sensitive to the mois-
ture on the coke surface. For this reason, it is thought 
that camera luminance has higher estimation accuracy 
for the powder ratio.
 As described above, it has become possible to grasp 
the particle size distribution of  the entire particle size 
range by adding a camera for measurement of the pow-
der ratio, and as a result, even more appropriate blast 
furnace operation is now possible.

3.   Guidance System for Hot Metal Temperature 
Control

 JFE Steel implemented an operation guidance sys-
tem based on hot metal temperature prediction 8 hours 
in advance by a physical model of  the blast furnace, 
and has introduced and uses this system at all blast fur-
naces operated by the company 3). This chapter 
describes the creation of a model simulating the opera-
tional actions taken by operators to keep a constant 
hot metal temperature, and the further reduction of 
variations in the hot metal temperature achieved by 
incorporating this model in the guidance system for hot 
metal temperature control 4).

3.1   Problem and Approach of Guidance System 
for Hot Metal Temperature Control

 The physical model using by the guidance system 
for hot metal temperature control described in the liter-
ature 3) had the problem of  reduced control perfor-
mance in case of external disturbances that are difficult 
to express by a physical model, such as variations in the 
burden descent rate, etc. However, even under poor 
operating conditions, experienced operators can take 
appropriate operational actions based on sensor infor-
mation such as the top gas temperature and tuyere 
temperature. Therefore, an operator behavior model 
was constructed by modeling the operational actions 

themselves which operators take for hot metal tempera-
ture (HMT) control.
 Since operators take operational actions by visually 
grasping the trends of process variables, in this model, 
we used a convolutional neural network (CNN), which 
is widely used in the field of image processing.

3.2   Construction of Operator Behavior Model

 Table 1 shows the main process variables which 
operators consider when deciding HMT control 
actions. Among these variables, the loading rate means 
the number of  charges of  burden materials charged 
from the top of  the blast furnace per hour and is an 
index that expresses the burden descent rate. Because 
the iron ore will reach the hearth without being com-
pletely reduced if  the loading rate is excessive, there is 
an increased possibility of  a decrease in HMT. The 
tuyere temperature is defined as the average of the tem-
perature measurement values obtained by thermocou-
ples embedded in approximately 40 tuyeres installed 
around the furnace hearth. Since the tuyere tempera-
ture is influenced by radiation from the coke bed and 
the hot metal, this variable tends to change ahead of 
HMT.
 Operators monitor the trends in the main process 
variables, tracing back a point about 1 day before the 
present time, in order to understand the degree of 
effect of  operational actions taken in the past on HMT 
and the process variables that have a high correlation 
with HMT. The operators also predict future changes 
in HMT from the trends in the main process variables 
in the most recent several hours in order to take appro-
priate operational action.
 In the operator behavior model, information in con-
nection with the main process variables is input. A 
2-dimensional matrix was prepared by standardizing 
and arranging the data for each process variable in the 
most recent 32 hours, using the 30 minute average val-
ues of the operational data.
 Because the control inputs decided by operators per 
one operation are substantially uniform, the model 
does not make quantitative predictions of  control 
inputs, and only outputs the direction (increase, 
decrease, hold) of  the control actions by operators. 

Table 1 Process variables that operators consider important

No. Variable Unit

1 Control error of hot metal temperature (HMT) ˚C

2 Coke rate kg/t
3 Top gas temperature ˚C

4 Loading rate ch/hour

5 Tuyere temperature ˚C
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Therefore, the three levels of  “Increase HMT,” 
“Decrease HMT” and “Hold” (i.e., monitor conditions 
without taking action) were given to the respective 
data. However, cases that were judged to be erroneous 
control actions were excluded from the training data in 
advance to prevent simulation of erroneous actions by 
operators 4).
 Next, the prepared matrix was input to the CNN as 
an image in which the abscissa represents time and the 
ordinate shows the data items. The CNN comprises 
three layers, a convolution layer, a pooling layer and a 
fully connected layer. In the convolution layer, convolu-
tion operations are performed by a filter, which is a 
rectangular weight matrix, and activation is performed 
by a nonlinear function. In this research, convolution 
operations are executed only for the temporal axis, and 
a ReLU (Rectified Linear Unit) was adopted as the 
activation function 5). Downsampling is performed in 
the pooling layer. Weighting is done in the fully con-
nected layer, and the probabilities of  the three classes 
of Increase HMT, Decrease HMT and Hold are output 
by a Softmax function. Table 2 shows the network 
architecture of  the CNN, where Conv, Pool and Fc 
mean convolution layer, pooling layer and fully con-
nected layer, respectively. All layers are connected in 
series.
 In the operator behavior model, the value obtained 
by subtracting the probability of  a Decrease HMT 
action from the probability of an Increase HMT action 
is defined as the predicted action value. Cases where 
the predicted action value exceeds the upper threshold 
were defined as Increase HMT action judgments, while 
cases where the value is lower than the lower threshold 
were defined as Decrease HMT action judgments.

3.3   Result of Validation Using Actual 
Operational Data

 The preprocessing described in the previous section 
was done for the operational data from 2019 at West 
Japan Work (Kurashiki District) No. 2 blast furnace, 
and 6 000 datapoints were prepared for each 30 min-
utes. The initial 5 400 points were used as the training 
data, 300 points were used as validation data for tuning 
the hyperparameters of  the CNN, and the remaining 

300 point were used as the test data for evaluation of 
the predictive performance of  the operator behavior 
model.
 Figure 5 shows the results of  validation of the oper-
ator behavior model. The red line in Fig. 5 represents 
the predicted action values output by the operator 
behavior model, and the blue plots mean actions that 
were actually executed by operators. The tendencies of  
the actions taken by the operators and the predicted 
action values output by the operator behavior model 
were generally in agreement.
 Table 3 shows a confusion matrix summarizing the 
classification of  Increase HMT judgments, Decrease 
HMT judgments and Hold judgments by the operator 
behavior model. The green lines in Fig. 5 are the upper 
and lower threshold values. The threshold values were 
determined so that the ratios of the actual actions and 
the predicted actions were the same for all test data. 
The agreement rate between the judgments by the oper-
ator behavior model and the actual actions was 57.3 %, 
while the ratio of  cases where the judgment by the 
operator behavior model and the actual actions had 
opposite directions was <1 %, showing satisfactory 
predictive accuracy.

3.4   Result of Evaluation in Actual Operation

 The operator behavior model developed in this 
study was incorporated in the guidance system for hot 
metal temperature control based on model-based pre-
dictive control by a physical model in the previous 
report. Table 4 shows the relationship between the con-

Fig. 5 Comparison between actual and predicted actions

Table 3 Confusion matrix of operator model

Predicted action by CNN

Up Stay Down

Actual 
action by 
operators

Up 20.7 % 18.7 %  0.3 %

Stay 12.0 % 22.7 %  7.0 %

Down  0.7 %  4.0 % 14.0 %

Table 2 Network architecture of CNN

Layer
Patch 
size

Stride
Output feature 

map size
Activation 
function

Data 64×5

Conv1 5×1 1 60×5 ReLU

Pool 2×1 2 30×5

Fc1  1×2 ReLU

Fc2  1×3 Softmax
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trol action output by the physical model, the control 
action output by the operator behavior model and the 
recommended action, which is the final output of  the 
guidance system. As can be seen in Table 4, when the 
control action by the physical model and the control 
action by the operator behavior model have opposite 
directions, the recommended action is Hold.
 A long-term operation test of  the operation guid-
ance system based on hot metal temperature prediction 
including the operator behavior model was carried at 
West Japan Works Kurashiki No. 2 blast furnace. Fig-
ure 6 shows the results of  an evaluation of  control 
accuracy of  the hot metal temperature with and with-
out the operator behavior model. The root mean 
square σ  of  HMT control deviation by the guidance 
system with the operator model decreased by 1.5˚C in 
comparison with the conventional guidance system 
without the operator behavior model. Thus, it can be 
said that the introduction of  the operator behavior 
model improved the effectiveness of guidance system in 
reducing HMT variations. The operation guidance sys-
tem based on hot metal temperature prediction incor-
porating the operator behavior model is now used in 
the standard production process at multiple blast fur-
naces operated by JFE Steel.

4.   Permeability Anomaly Guidance

 Under blast furnace operation aiming for low RAR 
of  recent years, there is an increased possibility of 
decreased permeability in the furnace, and with a fur-
ther deterioration in permeability, there is also a higher 

likelihood of the trouble called “channeling,” in which 
the upward flow of  the ascending blast is locally con-
centrated. Since even small channeling trouble can 
cause collapse of  the burden in the furnace and may 
become a cause of serious trouble in the longer term, it 
is desirable to take action in advance, for example, by 
reducing the blast volume. However, it is not necessarily 
possible to recognize anomalies that may lead to chan-
neling in the future with only the conventional method 
of  setting a threshold for ventilating resistance and 
monitoring the furnace condition. In such cases, the 
operator may be slow to realize that an anomaly exists, 
or overlook an anomaly entirely.
 JFE Steel developed a permeability anomaly detec-
tion technique and guidance system utilizing Q statis-
tics, which is a multivariate statistical process control 
(MSPC) technique 1). In this system, the data groups 
obtained by pressure gauges that were already installed 
in the shaft surface layer in the circumferential and 
height directions are used as the input  1, 6).
 Figure 7 shows the temporal change in the furnace 
pressure data obtained from the shaft pressure gauge. 
In the previously-developed anomaly detection tech-
nique, disturbances in the synchronicity of  multiple 
shaft pressure values, as shown in Fig. 7, which indicate 
deterioration of permeability, were indexed as a single 
value by the Q statistics technique, and a threshold was 
set for that value and used in judging anomalies.

4.1   Detection of Anomaly Signs by Q Statistics

 Anomaly detection based on a threshold value of 
the Q statistic makes it possible to detect conditions 
where comparatively large variations exist in the shaft 
pressure values, for example, before channeling occurs. 
However, if  “signs” with smaller variations can be cap-
tured, it is assumed that trouble can be minimized. 
Therefore, we developed a sign detection technique 
using the count-up method to capture the signs of 
anomalies using Q statistics. Figure 8 shows the anom-
aly detection method using Q statistics.

4.2   Example of Sign Detection by Q Statistics

 The possibility of capturing the signs of all trouble 

Fig. 6 Control accuracy of hot metal temperature

Fig. 7 Shaft pressure change in normal/anomaly operation

Table 4  Recommended control action by the guidance 
system

Transient model-based control

Increase Hold Decrease

Operator 
model-based 
control

Increase Increase Increase Hold

Hold Increase Hold Decrease

Decrease Hold Decrease Decrease
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that occurred in a blast furnace in the past 3 years by 
any of the three techniques described above was inves-
tigated. As one example, Fig. 9 shows the result of  an 
off-line validation of  anomaly sign detection by the 
count-up method for cases where large fluctuation 
actually occurred in the shaft pressure. The upper part 
of  Fig. 9 shows the trend data for the shaft pressure, 
and the lower part shows the Q statistic trend. When 
the fluctuation of the shaft pressure became gradually 
larger, the level of  the Q statistic also increased and 
exceeded the count-up threshold. After the Q statistic 
exceeded the threshold value, a sign of an anomaly was 
detected at the timing indicated by d) in the figure after 
the passage of  a set time of  15 minutes, after which 
that detection of  the anomaly sign continued. Subse-

quently, the shaft pressure fluctuation became gradually 
larger (Fig. 9 (e)), and the Q statistic increased further 
while continuing to exceed the threshold. The shaft 
pressure fluctuation then became large at the timing of 
f) in the figure, leading to a reduction of the blast vol-
ume.
 In this example, it was possible to capture the “sign” 
of  a blast furnace anomaly by the count-up method 
approximately 6 hours before the actual trouble 
occurred. Anomaly detection by the previously-devel-
oped Q statistic technique (Fig. 8 a)) was 24 minutes 
earlier. In actual operation, the operator is given guid-
ance to take action to reduce the volume of blast blown 
into the furnace through the tuyeres if  a sign of  an 
anomaly is detected by any of  the three techniques 
shown in Fig. 8. This guidance system is currently in 
actual operation at all JFE Steel blast furnaces.

5.   Conclusion

 As described above, the level of  the CPS blast fur-
nace was enhanced by developing an advanced coke 
particle size meter, hot metal temperature control tech-
nology and permeability anomaly guidance. As a result 
of  the introduction of  these technologies, further 
improvements in blast furnace operation efficiency and 
stability can be foreseen. The authors also plan to con-
tinuously improve the functions of  the blast furnace 
CPS in the future.
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