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A Gaussian Filter for Plate Flatness Evaluation System 
with 3-D Scanner
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Abstract:
LIDAR (light detection and ranging) system was 

applied to a plate flatness evaluation system. Plate flat-
ness surfaces are reconstructed from many points gener-
ated by LIDAR with a smoothing spline method. We 
defined a smoothing spline functional with sampling 
measure weights. The equivalent number of parameters 
defined on this functional does not depend on the distri-
butions of samples. The approximation of the equivalent 
number of parameters is derived when the number of 
samples becomes infinity. This approximation greatly 
reduced the calculation time needed to estimate the opti-
mal smoothing. The smoothing spline calculation cost 
was so high that new algorithms (FMM: fast multi-pole 
method) were introduced and we developed the smooth-
ing engine, which was applied to practical problems. The 
engine generated clear surfaces and was robust to vari-
ous dirty points cloud.

1. Introduction

Recently, the 3-D laser scanner (3-D scanner) has 
become a general-purpose, low-cost technology, and 
3-D scanners are now generally applied in various 
fields. In shipyards, 3-D scanners are used to measure 
the flatness of  steel plates. In the steel industry, 3-D 
scanners cannot be used for online measurement of the 
flatness of  moving plates in a manner similar to an 
online shape meter, but they have high portability and 
are considered to be suitable for online measurement 
of the flatness of fixed plates.

The problem for application of  3-D scanners to 

online plate flatness measurement is the difficulty of 
data handling with the millions of point data measured 
by a 3-D scanner. These point data, which are projected 
on the plate surface, are not grid based and are distrib-
uted inhomogeneously. Therefore, the procedures for 
approximation to a curved surface are very compli-
cated. Also, each point datum has measurement error, 
so a smoothing procedure is necessary to enhance mea-
surement accuracy. Therefore, we applied a smoothing 
spline method to this problem.

The smoothing spline method is a well-known 
regression method which is used to estimate non-para-
metric curves or non-parametric surfaces from noisy 
samples. This method is a Gaussian filter and is applied 
to various fields of  science and engineering, such as 
signal processing applications for noise filters1, 2), image 
processing applications for image reconstruction3) and 
noise filters4), inverse problems for gravitational and 
magnetic fields5), statistical processing applications for 
medical data6) and surface reconstructions from noisy 
data7, 8) measured by LIDAR (light detection and rang-
ing).

The smoothing parameter in the smoothing spline 
method enables calculation of  a regression function 
with arbitrary smoothness. When the smoothing 
parameter is too small, the regression function is over-
fitted and the function takes a zigzag shape. Conversely, 
when the smoothing parameter is too large, the regres-
sion function becomes too smooth. In this case, the 
regression function loses important information. Thus, 
there is an optimal smoothing parameter that makes it 
possible to calculate an adequate regression function 
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with a better balance between fitness and complexity. 
The GCV (Generalized Cross Validation) method9, 10) 
is often used for automatic estimation of  the optimal 
smoothing parameter. GCV includes iterative calcula-
tions of  an inverse matrix of  a full matrix. However, 
much time is required to calculate the iterations, and 
when the number of  points is large, it is practically 
impossible to calculate the optimal smoothing parame-
ter.

Similarly, much time is required to calculate the 
smoothing spline surface, and when the number of 
samples is large, it is practically impossible to calculate 
the smoothing spline surface. Fast methods to calculate 
a theoretical smoothing spline surface by using FMM 
(Fast Multi-pole Method) and fast methods to calcu-
late an approximate smoothing spline surface by using 
a discrete model have been studied. Beatson et al.11) 
proposed a fast evaluation method for spline surfaces 
by using FMM. This method enables a drastic reduc-
tion in calculation time. Beatson et al.12) proposed a 
fast method based on preconditioned GMRES (Gener-
alized Minimal Residual) iteration to calculate spline 
coefficients.

In this paper, we introduced original improvements 
in the conventional smoothing spline method. We 
define a smoothing spline functional with sampling 
measure weights13, 14). The functional greatly reduces 
the calculation time needed to estimate the optimal 
smoothing parameter. We applied our proposed 
method to practical problems of plate surface estima-
tion for points measured by LIDAR. The fact that our 
proposed method is appropriate for plate surface 
reconstructions was clarified15).

2. Smoothing Thin Plate Spline Regression with 
Sampling Measure Weights

The smoothing thin plate spline (TPS) functional 
with weights is defined as
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     is an arbitrary function. Eq. (2) is the 
numerical integral formula. For example, the weights 
are obtained by the numerical cubature method16, 17). In 
general, however, the weights calculated by numerical 
cubature are not all positive. If  some negative weights 
are found, the sampling points corresponding to these 
negative weights must be removed.

Applying the variational principle to the functional 
of Eq. (1),
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     is Dirac’s delta function, Γ  is the 
boundary of  the region Ω, and μ  is the normal unit 
vector of  the boundary Γ. From Eq. (3), the partial 
differential equation of the smoothing TPS is given by
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and the boundary conditions are given by

( )2 2 0 onf f μ∇ = ∇ ∇ ⋅ = Γ  .

In general, a closed-form solution of the partial differ-
ential equation (4) is not possible, but if  the region Ω is 
infinity, the solution of the partial differential equation 
(4) becomes very simple and the regression surface is 
given by

( )
( )

( ) ( ) ( ) ( )( )2

1 2 3
1

, , log ,
8

im
i iM

M M
i

d
f x y c c x c y r x y r x y

π=

= + + +   … (5)

and the constraints are given by

( ) ( ) ( ) ( ) ( )

1 1 1

0
m m m

i i i i i
M M M M M

i i i

d x d y d
= = =

= = =     ………………… (6)

where, c1, c2, c3, and ( ) ( ) ( ) ( ) ( )

1 1 1

0
m m m

i i i i i
M M M M M

i i i

d x d y d
= = =

= = =    (i=1, …, m) are the unknown 
parameters, and ( ) ( ) ( )( ) ( )( ) ( )

2 2

, 1, ,i i i
M M Mr x y x x y y i m= − + − =           0

1

, ,
m

i i i
M M M

i

g x y d g x y




     is defined as

( ) ( ) ( )( ) ( )( ) ( )
2 2

, 1, ,i i i
M M Mr x y x x y y i m= − + − =   .

Substituting Eq. (5) into Eq. (4),
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Eqs. (7) and (6) engender the linear equation system
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The unknown parameters {c} and {dM} can be 
obtained by solving Eq. (8). A regression surface in 
matrix form
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may be obtained by substituting Eqs. (9), (10), (11) and 
(12) into Eq. (5). The regression surface can then be 
obtained by substituting the unknown parameters into 
Eq. (13).

3. Generalized Cross Validation and Information 
Criterion

GCV, which is an approximation of  leave-one-out 

cross validation, is one of the most popular methods to 
obtain the required optimal smoothing parameter. 
GCV is defined such that the optimal smoothing 
parameter is the one which minimizes the evaluation 
function
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Substituting into Eq. (15) the regression surface of Eq. 
(13), in which the unknown parameters {c} and {dM} 
from Eq. (8) are substituted, the Hat matrix of  the 
smoothing TPS with weights can be written as
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where, [Im×m] is the m-by-m identity matrix, and [O3×m] 
is the 3-by-m zero matrix.

It is known that the GCV evaluation function of 
Eq. (14) is associated with the information criterion. In 
particular, AIC18) is given by
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and k is the number of  parameters or the degree of 
freedom for a regression model. AIC is one of the most 
popular and simplest information criteria; it is nearly 
equivalent to the GCV evaluation function when m is 
large. Eq. (14) can be transformed to the information 
criterion
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by using the increasing function. In the limit of infinite 
samples, Eq. (18) becomes

( )2 2 traceAIC LL H = − +    . …………………… (19)

Comparing Eq. (17) with Eq. (19),       replaces 
the number of  parameters for the smoothing TPS. 
Consequently, ENOP (Equivalent Number of Parame-
ters) is defined as
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As the number of  samples becomes large, the time 
required to calculate ENOP becomes prohibitively 
long, because ENOP includes computing the m+3 -by- 
m+3 inverse matrix. Moreover, the inverse matrix must 
be computed every time the smoothing parameter is 
changed.

4. Approximation of Equivalent Number of 
Parameters

In the limit of infinite samples, the partial differen-
tial equation of  the smoothing TPS with sampling 
measure weights, Eq. (4), becomes
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where 4 0Mf f zγ∇ + − =   is the sampling value function. Applying the 
Laplace transformation to Eq. (21),
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where, j is an imaginary unit, and ω 1 and ω 2 are the 
angular frequencies in the x -axis and the y -axis. The 
frequency response function ( ) ( ) ( )( )

( )

122 2

1 2 1 2

122 2
1 2

, 1

1

h j jω ω γ ω ω

γ ω ω

−

−

 
= + + 
 

 = + + 
 

 
 shows that the 

smoothing TPS acts as a low pass filter and a Gaussian 
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filter with phase compensation.
When the region Ω is rectangular (L1×L2), the 

degree of freedom k1 for trigonometric functions in the 
x -axis is defined as
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Substituting Eq. (26) into Eq. (25),
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Applying the above formulation to the y -axis, the 
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From the definition of  ENOP, Eq. (20), ENOP is 
the summation of eigenvalues of the Hat matrix; then, 
ENOP for an infinite number of samples is given by
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where B is Euler’s Beta function. This approximation 
of ENOP, kA, is a very simple expression and does not 
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depend on the distributions of  samples. The approxi-
mation of ENOP, Eq. (30), is only applied to a rectan-
gular region. The approximation of ENOP generalized 
for application to an arbitrary region is given by

( )
1
2

8Ak γ γ
−Ω=  . ………………………………… (31)

The above-mentioned derivation of the approxima-
tion of ENOP (31) is formal. The formulation for the 
smoothing spline curve can be found in Craven et al.9) 
and Golub et al.10). The details of  the theories are 
described in these references.

Figure 1  shows the approximation of  ENOP 
obtained from Eq. (31) and the exact ENOP, kGCV, 
obtained from Eq. (20) when the smoothing TPS is 
used, the number of  samples is 21* 21=441, and the 
sampling region is [0,1]×[0,1]. Bias is added to the 
approximation of  ENOP to enable comparison with 
the exact ENOP. The approximation of  ENOP, kA, 
shows good agreement with the exact ENOP, kGCV, in 
the ENOP range from 0 to half  the number of samples; 
however, the correlation is not good for ENOP ranging 
from half  to the total number of samples. The typical 
practice is that ENOP should not be used when it is 
larger than half  the number of  samples. Therefore, if  
the optimal ENOP decided by GCV or information 
criteria is more than half  the number of  samples, the 
number of samples should be increased.

5. Plate Surface Estimation by Using LIDAR 
and Smoothing TPS with Sampling Measure 
Weights
Figure 2 shows the point cloud of samples measured 

with a LIDAR on a plate surface. The plate length is 
5.475 m and the plate width is 2.143 m. The x -axis is 
the rolling direction, and the values of  the x -axis are 
ten times the actual ones. The y -axis is the plate width 

direction. The distance in the longitudinal direction x 
is decoupled because the wavelength in the longitudinal 
direction x is shorter than that in the width direction y 
and to show both wavelengths in the same dimension. 
The distribution of  samples is not homogeneous. The 
number of samples is 25 691. The values of the samples 
include measurement error of 2 mm. This error value is 
taken from the specification of  the 3-D laser scanner, 
which is a Photon 120 manufactured by FARO 
Corp. The samples (Fig. 2) are interpolated into a 
DEM (digital elevation model) in Fig. 3 with a mesh of 
triangles. Although the DEM of the plate surface has a 
zigzag shape, the actual plate surface was not zig-
zagged, as it was a rolled plate. The zigzag shape 
derives from LIDAR measurement error. The zigzag 
shape is considered to be eliminated by the smoothing 
TPS with sampling measure weights.

As the number of  samples becomes larger (experi-
mentally more than 3 000), the time required to solve 
the system of  Eq. (8) becomes prohibitively long. In 
this case, in order to evaluate the value of Eq. (13), we 
applied a fast calculation method based on FMM (Fast 
Multipole Method) proposed by Beatson et al.11) and 
solved the system of Eq. (8) with GMRES (Generalized 

Fig. 1 Equivalent number of parameters
Fig. 2 Plate surface point cloud

Fig. 3 Plate surface DEM
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Minimal Residual Method). In the preconditioning of 
GMRES, the approximated cardinal functions pro-
posed by Beatson et al.12) were used as reference.

In this case, we use BIC (Bayesian information cri-
terion) defined as

( ) ( ) ( ) ( )( ) 2

1

2

log ,

log log 1

m
i i i i

A M M M M
i

A

BIC m z f x y

k
m m

m
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  = −     
   − × −    


 

to decide the optimal smoothing parameter. Practically 
speaking, application of the GVC method is not possi-
ble with large-scale samples. Figure 5 shows the search 
result of  the optimal smoothing parameter. The hori-
zontal axis shows the smoothing parameter. The verti-
cal axis shows BIC. The points show the search process, 
and the circle at the lower right shows the optimal 
search result. The value of  the optimal smoothing 
parameter is 5.09×10−3, and the value of  ENOP is 
199.9. Figure 4 shows the estimated plate surface for 
the optimal smoothing parameter. Good agreement 

between the plate surface shown in Fig. 4 and the result 
of manual measurement was confirmed.

The plate surface was estimated on a 2.66 GHz 
Intel(R) Core(TM)2 Quad CPU with a 3.25 GB RAM 
and a Microsoft Visual C++ 2005 on a Windows XP 
x86. It took 9.8 s to calculate the plate surface in Fig. 4 
and 226 s to calculate the optimal smoothing parame-
ter.

The distribution of  the wavelength on a plate sur-
face does not depend on the size of plates if  the plates 
are produced under the same processing conditions. 
Let the representative half  wavelength on a plate sur-
face be Lω . From Eqs. (25) and (31), the smoothing 
parameter for the smoothing TPS is given by

4 64Lωγ =  . …………………………………… (32)

The smoothing parameter depends on only the half  
wavelength, Lω . Eq. (32) means that it is not necessary 
to calculate the optimal smoothing parameter when-
ever the plate to be measured changes. Figure 6 shows 
the surface regressions when the same smoothing 
parameter is used.

6. Conclusions

In this paper, we proposed a method for recon-
structing the surface shape of steel plates from a large 
number of point data obtained by a 3-D scanner. The 
following conclusions were drawn from the theoretical, 
numerical, and experimental investigations carried out 
in this work:
(1) A smoothing TPS method with sampling measure 

weights was defined theoretically.
(2) In the limit of  infinite samples, the transfer func-

tion and the frequency response function for the 

Fig. 4 Result of optimal regression for plate surface

Fig. 5 Results of Bayesian information criterion

Fig. 6 Results of regressions for plate surfaces
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smoothing TPS system with sampling measure 
weights were solved theoretically.

(3) The approximation of ENOP was derived theoreti-
cally from the frequency response function. We 
confirmed that the approximation agreed with the 
theoretical ENOP.

(4) The information criteria including the approxima-
tion of  ENOP enabled calculation of  the optimal 
smoothing parameter.

(5) We applied the proposed method to the problem of 
actual large-scale samples measured by LIDAR. 
The results clarified the fact that engineering appli-
cations of the method are possible.
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