要約版

川崎製鉄技報

KAWASAKI STEEL GIHO Vol.27 (1995) No.3

千葉製鉄所新熱延工場の概要

Outline of Newly Built Chiba No.3 Hot Strip Mill

小川 靖夫(Yasuo Ogawa) 中村 武尚(Takehisa Nakamura) 北尾 齊治(Nariharu Kitao)

要旨:

川崎製鉄千葉製鉄所では、第3熱延工場の建設を完了し、1995年5月稼働させた。当工場では、世界初の完全連続圧延を実現し、従来水準を逡巡する高精度熱延鋼板、極薄熱延鋼板、良加工性熱延鋼板等の圧延を実現する。このための、必要条件となる高速搬送機能・ストリップ切断機能等の設備機能、および高精度ミルペーシングを中核とする全自動圧延制御機能を備えている。また、高精度・高品質圧延に向け、加熱温度精度向上、粗ミル熱放散抑止、板厚・クラウン制御能力向上、巻取り温度精度工場等を実現するべく、設備・制御両面からの対策を実施した。

Synopsis:

Kawasaki Steel has finished the construction of No.3 hot strip mill in Chiba Works and started up its operation in May 1995. Features of this mill are: (1) World's first fully continuous finisher rolling (endless hot-strip rolling) mill (scheduled for start-up in January 1996); (2) high accuracy and high quality rolling based on (a) pair-cross mills with excellent control by inter-stand measurement of strip gauge and crown, and (b) full-line temperature control using high accuracy slab heating and strip cooling equipment.

(c)JFE Steel Corporation, 2003

本文は次のページから閲覧できます。

Outline of Newly Built Chiba No.3 Hot Strip Mill

小川 靖夫 Yasuo Ogawa 千葉製鉄所長付 主霍 (部長)

中村 武尚 Takehisa Nakamura 于葉製鉄所 企画部企 画室 主查(部長)

北尾 齊治 Nariharu Kitao 千葉製鉄所 制御技術 部制御技術室 主告 (部長)

要旨

川崎製鉄千葉製鉄所では、第3熱延工場の建設を完了し、1995年5月稼働させた。当工場では、世界初の完全連続圧延を実現し、従来水準を凌駕する高精度熱延鋼板、極薄熱延鋼板、良加工性熱延鋼板等の圧延を実現する。このための、必要条件となる高速搬送機能・ストリップ切断機能等の設備機能、および高精度ミルペーシングを中核とする全自動圧延制御機能を備えている。また:高精度・高品質圧延に向け、加熱温度精度向上、粗ミル熱放散抑止、板厚・クラウン制御能力向上、巻取り温度精度向上等を実現するべく、設備・制御両面からの対策を実施した。

Synopsis:

Kawasaki Steel has finished the construction of No.3 hot strip mill in Chiba Works and started up its operation in May 1995. Features of this mill are: (1) World's first fully continuous finisher rolling (endless hot-strip rolling) mill (schduled for start-up in January 1996); (2) high accuracy and high quality rolling based on (a) pair-cross mills with excellent control by inter-stand measurement of strip gauge and crown, and (b) full-line temperature control using high accuracy slab heating and strip cooling equipment.

1 新熱延工場の特徴

千葉製鉄所では1995年5月に、西工場に第3熱延工場を稼働させた。本ミルは、需要家の製品精度改善の要求および寸法領域拡大、特に薄物化のニーズにこたえつつ、製造コストの大幅な削減を達成することを狙いに、建設されたものである。ホットストリップミルのあるべき姿の実現を志向し、下記の特徴を備えている。

- (1) 世界初のシートバー核合による連続圧延 (1996年1月稼働 予定,以降エンドレス圧延と称す)を実現するミルとしての必 要機能が充足されている。
- (2) 最高水準の品質と性能を有する薄板の製造を実現するための 圧延設備および付帯機器群、センサー、制御機能が充実してい る。

またさらに、これらを活用し、従来の熱間圧延の制約を緩和する ことにより、加工性を従来より大幅に改善した熱延鋼板を始めとす る、新製品の圧延を実現することができる。

千葉製鉄所内の第3熱延工場の配置を Fig. 1 に示す。当工場は、東工場に設置された第1熱延工場および第2熱延工場の代替として位置づけられ、月産45万トンの能力を備える。西工場は、粗鋼生産拠点でもあり、連鋳工場と直結したレイアウトを採用したことにより、スラブ顕熱の有効活用による省エネルギー、物流の合理化、リードタイムの短縮などもあわせて図ることができる。

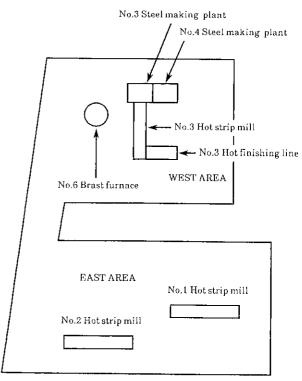


Fig. 1 General arrangment of No.3 hot strip mill

^{*} 平成7年9月6日原稿受付

2 エンドレス圧延の概要と効果

従来, 熱問圧延はスラブ1本ごとに、粗圧延機にて 30 mm から 60 mm 厚のシートバーに圧延し、これを、仕上げ圧延機で所定の仕上り 5万法に圧延していた。

住上げミル通板の際の圧延機設定は、住上げミル人側温度等の情報に基づく予測制御により行う。このため、予測の適否が製品の寸法、温度等の精度を支配する。熱間圧延における圧延挙動予測はすでに長い歴史を持つものでありながら、温度等のきわめて急激な遷移条件の中での予測であり、未だ完成の域には到達していない。しかし、一度先端を通板してしまえば、以降は各種センサーのフィードバック制御等が活用できるため、品質精度は急速に改善できる。このため、板厚等の製品精度不良は先端部にて発生する。

また、熱間圧延における圧延限界厚は、仕上げ圧延完了後の巻取 り装置までの板の搬送時の安定性により制限をうけていた。熱間圧 延は、一般的にはオーステナイト単相領域で行われる"。板厚が薄 くなると、ロールとの接触による温度降下が大きくなり²⁰、所定の 住上げ圧延完了温度を達成するためには、薄物ほど高速での圧延が 必要になる。一方、薄物材は、高速で仕上げ圧延機出側テーブル (ランナウトテーブル)を走行すると、先端が飛び上がるなどの走行 の不安定をきたす。一般的には 2.0 mm 材で 800 mpm 程度が限界 である"。このため、通板速度に制限を受ける。これを補うために 薄物ほどスラブ加熱温度を上げ、仕上げ進入温度を高めなければな らない。しかしながら、仕上げミル進入温度をある程度以上高める と、仕上げスタンド間で発生する酸化皮膜(スケール)が圧延の際製 品表面に押し込まれ、製品の表面欠陥を発生させてしまうことにな る®。この結果、ある程度以下の板厚の材料は所定の材質あるいは 表面性状を得ることができなくなる。これが、従来の圧延方法にお けるホットストリップミルの圧延限界の制約の構造である。

また、ストリップ尾端の仕上げミル抜け時の板蛇行に伴い発生する絞り込みの問題も、板厚が薄くなり板の剛性が小さくなるにしたがって発生しやすくなる。

連続圧延は、仕上げ圧延に先立ち、シートバーを接合し連続的に 仕上げ圧延機に供給する圧延方法である。

この方法によれば、下記の効果が得られる。

- (1) 仕上げミルの先端通板は、一連の接合材の先端のみとなる。 この結果、品質精度の飛躍的な向上をはかることができる。
- (2) 先端通板速度制限の緩和による
 - 圧延板厚領域の薄物側への拡大。
 - ・加熱抽出温度の低下,
 - 圧延能率の向上。
- (3) 全長均一速度圧延による、仕上げ出側温度、巻取り温度制御 性能の向上。

- (4) 尾端絞り込みトラブルの減少。
- (5) 全長均一張力圧延による潤滑圧延効果の拡大,さらにこれを 活用することによる新機能熱間圧延製品の圧延。

3 エンドレス圧延を可能とする設備構成

Fig. 2 に第3 無延工場の設備レイアウト概略を示す。 3 基の加熱 炉、サイジングプレス、 3 基の粗ミル、コイルボックス、接合装 置、 7 スタンド仕上げ圧延機、ストリップシャー、 2 基の巻取り機 が構成の基本となっている。各設備の主仕様を Table 1 にまとめ る。また、製品主仕様を Table 2 にまとめる。

さて、エンドレス圧延を行うためには接合装置自体を備えることが必須であるばかりでなく全圧延設備にこの圧延に対応する機能が要求される。Table 3 にエンドレス圧延対応の各設備機能の特徴をまとめる。

まず、先行材尾端の接合装置到達にあわせて、後行材を供給する必要がある。加熱炉内スラブの搬送は、ウォーキングビームにより行われる。先行スラブを抽出してから後行材の抽出までの炉内のスラブ搬送を速やかに行うことが、遅滞なく後行材を供給するための条件となる。これは、特に広幅材の連続圧延に際して重要である。このため、従来を大幅に上回る高速搬送加熱炉を備えた。

圧延時間はスラブ長さが短いほど短い。これは、粗ミルも、仕上げミルも同様である。先行材スラブが短い場合、先行材の仕上げ圧延は短時間で完了する。後行スラブが長い場合、この後行材の圧延時間をできるかぎり短くすることが重要である。このため、サイジングプレスおよび粗ミルも従来の設備に比較し高速化している。

後行材到達に誤差が生じると,後行材温度の低下あるいは接合不

Table 1 Main equipment specifications

Reheating furnace Capacity	Walking beam type Total 700 t/h
Sizing press Max. width reduction	300 mm
Roughing mill	
R1	4 000 t 2-high reversible
R2	4 200 t 4-high reversible
R3	3 800 t 4-high reversible
Finishing mill	4-higt pair-cross mill
F1-3	5 000 t
F4-7	3 800 t
Max. rolling speed	1 680 mpm
Down coiler	Hydrauric 4-wrapper roll type×2

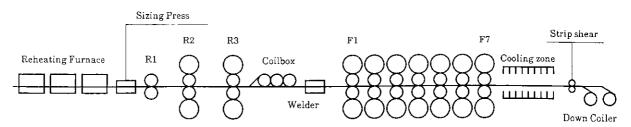


Fig. 2 Layout of No.3 hot strip mill

Table 2 Product specifications

		Carbon steel	Stainless steel
Gauge	(mm)	(0.8)*-1.2-24	1.5—10
Width	(mm)	600-1900	600—1 600
Coil diameter	(mm)	1 300 - 2 200 (max. 1 400 PIW)	
Max. weight	(t)	32	

^aAt continuous (endless) rolling

Table 3 Characteristics of main equipment supporting endless rolling

Reheating furnace	High-speed slab transportation by walking beam (max. 2 000 mm/min)	
Sizing press	High-speed press (20 mpm)	
Roughing mill	High-speed rolling (R3 max. 340 mpm) Layout minimizing intervention between bars	
Coilbox	3-position and 2-peeler	
Finishing mill	Flying gauge change Hydraulic screw down Work-roll bender Flying cross-angle change High-responsibility A.C. motor-drive	
Down coiler	High-speed dividing shear High-speed wrapping and tailing High-speed coil transportation	

可能が生じる。バッファーとして、シートバーを一度コイル状に巻取るコイルボックスを備えた。コイルボックスは、材料による圧延時間の差を吸収し、接合領域を広げるため、巻取り、待機、巻出しの3ボジションを備えている。

住上げ圧延機は、薄物広幅材の圧延に必要な高荷重・大出力圧延 機であるばかりでなく、一連のエンドレス圧延材の寸法・鋼種によ る差に対応してその製品寸法を作り分けるための、クラウン制御能 力、板厚走間変更能力を備えている必要がある。このため全スタンドに油圧圧下装置を備え、また、応答性を大幅に改善できる変流主機を採用している。クラウン制御能力を確保するため、全スタンドにベアクロスミルを採用し、特に F 4 以降では、圧延中にクロス角を調整できる機構を備えた。

接合した材料は、巻取り機前に設置された高速ストリップシャーにより分割される。ストリップを切断した後、巻取り機に進入する 先行材尾端を安定して停止すること、後行材先端を安定して巻取機 まで案内すること、高速の後行材先端を巻取ることが課題である。 これに対応するための、改善を加えた。

また、エンドレス圧延状態では、巻取りを完了したコイルの発生 ピッチは従来の圧延方法を大きく上回る。このコイルを遅滞無く搬 送ができるコイル搬送装置群を備えることも必要である。

4 エンドレス圧延を可能化する制御構成

エンドレス圧延実行のためには、ミル全体の自動化水準を従来に 比較し大幅にレベルアップしなければならない。第3熱延工場の制 御の特徴を Fig. 3 にまとめる。

この申核が、スラブの抽出タイミングを決め、先行材進捗に合わせ、後行材の圧延タイミングの調整を行うミルペーシング制御である。前述のとおり、先行材圧延完了にあわせて、正確に後行材を仕上げミルに供給する必要がある。高精度ミルペーシング制御の実現が必須である。

また、ミルペーシングの抽出指令タイミングにてスラブの昇熱が 完了していることも、必要条件である。このため、ミルペーシング と加熱炉燃焼制御の密な連携、高精度燃焼制御の実現があわせて必 要である。

さらに、ミルベーシングの外乱となる諸要素、例えば、粗サバース圧延のタイミングのばらつき、オベレータによる圧延スケジュールへの介入は、圧延時間予測の誤差となり、エンドレス圧延においては徹底的に排除されなければならない。このため、完全自動セットアップの確立と全ライン完全自動圧延は、エンドレス圧延実行上の必要条件となる。

住上げミルでは、エンドレス圧延時の 先行材と後行材の寸法・ 鋼種の差に応じ、走間で板厚を変更する制御が必要である。さら に、接合点を正確にトラッキングすることが、走間変更を正確に行 うため、またストリップ切断を正確に行うために必須となる。

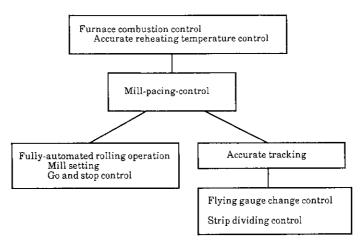


Fig. 3 Schematic diagram of control functions supporting endless rolling

5 高精度高品質圧延への取組

エンドレス圧延は、仕上げ圧延速度(温度)・張力の均一化効果により、品質精度を飛躍的に向上させうる圧延方法である。しかしながら、その素材となるシートバーの温度・寸法精度は、製品品質にいぜんとして大きな影響をおよぼす。また、エンドレス圧延といえども、製品寸法等に応じた圧延速度等の条件変化は発生し、これに的確に対応して、高精度の品質を造り込むパード・ソフトを備える必要がある。これらのニーズに適合するための、第3熱延工場の主要機器の特徴を Table 4 にまとめる。

Table 4 Characteristics of main equipment for accurate and uniform production

Furnace	High skid button adoption (200 mm height) All ceramic fiber construction: Low thermal inertia (12°C/min) Reheating temperature accuracy, ±15°C
Sizing press and roughing mill	High-speed processing: temperature drop from extraction to finisher entry, ≤100°C Camberless production: rolling under restraint using long side guides
Finishing mill	Accurate mill set-up using inter-stand sensor: Profile meters/thickness gauge Width gauge Quick response AGC and tension control: Hydraulic screw down A.C. moter-drive Low inertia looper Gauge accuracy at head end, σ≈10 μm Crown ≤30 μm
Cooling system	Stable flow rate: Head water tank method Clean water (prevent nozzle clogging) Subdivided control valves: Coiling temperature accuracy, ±15°C

5.1 加熱炉

スラブの均一加熱は、製品品質の鍵をにぎる。特殊合金を採用し、スキッドボタンの高さを 200 mm まで上げて、スキッドマークの発生を抑止している。また、加熱温度制御応答を向上するため、炉内耐火物は炉底を除きセラミックファイバーを全面的に使用した。これらにより、±15℃の均一加熱を達成できる。

5.2 粗ミル

加熱温度を下げることは、スラブ表面温度が高すぎることにより発生する各種表面欠陥(例えばスラブ表面の焼き割れ等)を抑止する上で非常に重要である。仕上げ入側温度は、材質から決まる仕上げ 出側温度と、板厚・仕上げ圧延条件から決まる仕上げ圧延中の温度降下から決まる。このため、加熱温度を下げるためには、粗ミル圧延中の温度降下を小さくすることが必要である。

第3熱延工場では、粗ミル高速化の効果により、抽出から仕上げ ミル入側到達までの温度降下を100℃に抑制することができる。 また、圧延時に発生するバーのキャンバーは、以降の通板性を阻害するばかりでなく、最終製品品質にも大きな影響をおよぼす。これを抑止するため、ミル入出側に設置されたサイドガイドには、その拘束能力を高める改善を施し、キャンバー抑止能力を高めた。

5.3 仕上げミル

仕上げミル入側から出側への板の状態の変化は、各圧延機の荷重から知る以外に知る方法が無いことが、仕上げミル設定のレベルアップの障害となっていた。第3熱延工場では、仕上げミルスタンド間に、板厚計、幅計、プロフィールメータを設置し、この分析に必要なデータ収集能力を大幅に改善した。さらに、これらセンサーの出力を用いた、油圧圧下、ワークロールベンダー、クロス角のダイナミック制御により、製品可法精度の向上をはかっている。

また、高応答の主機を活用し、高い張力制御精度を確保すること によって、板幅精度についても改善ができる。

5.4 巻取り温度制御

巻取り温度は製品の機械的性質を大きく左右する。巻取り温度制 御精度向上に向け、下記の改善を行った。

- (1) ヘッドタンク採用による注水圧力の安定化
- (2) 注水セクション分割の細分化 (1制御セクションのオン、オフによる巻取り温度の変化を5 $^{\circ}$ $^{\circ}$ 以内となるよう細分化)
- (3) 冷却ペッダー詰まり防止のため、冷却水系統を独立化し、水質を改善した。

6 合理化への取組

6.1 管制室設計

従来、熱延工場では、自動化機能が不上分である場合、実際の機 械の状態あるいは圧延材の状態を見ながらの運転作業が必要となる ため、オペレータは、スラブヤード、加熱炉出側、仕上げミル、巻 取り機、検査等の主要機器の近傍に設置された運転室に分散配置さ れていた。

第3熱延王場においては前述のごとく、全ての圧延作業はオペレータの介入無く継続できる仕組とした。このようなミルでは、運転室の分散は必要運転要員の増加を招くのみである。このため、全ての監視機能を一箇所の総合管制室に集中した。

総合管制室では、スラブヤードから巻取り・搬送までの全ての圧 延装置の監視、異常時の対処が可能であり、3名で、これら領域の 全ての機器に対応できる設計とした。

管制室は、ほぼラインの中央であり、緊急対応の要求される機会 の最も高い仕上げミル前に設置した。

6.2 ロールショップ設計

ロールショップは、圧延に使用するロールの研削を行うことを目的に、圧延工場に併設される。使用すみロールの搬送、グラインダーへのロールのセット、研削完了ロールのグラインダーからの取外し、ミル前への配列等、物の流れは多様であり、多くはクレーンを用いた搬送のため、非常に多くの人手を要する工場であった。

第3熱延工場ロールショップのレイアウト概略を Fig. 4 にまとめる。仕上げミルから抜き出された使用ずみロールは、ロール組み替え台車によって、直接ロールショップ境界まで搬送される。ロールショップ内には、ロール組み替え台車とのロールのやり取り、ロール格納庫とのロールのやり取り、ロールグラインダーとのロール

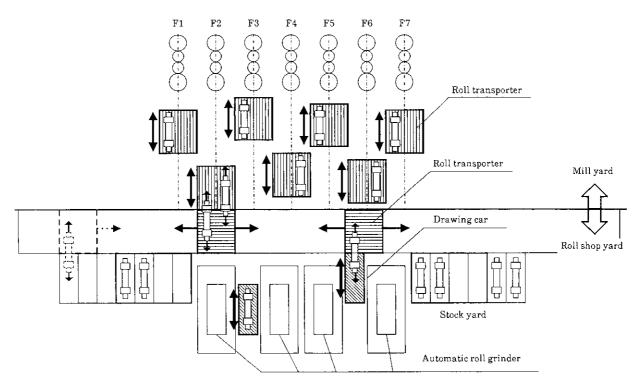


Fig. 4 Full-automatized work-roll transportation system at No.3 hot strip mill

のやり取りの機能を備えた自動走行台車が走行しており、これが計算機の指令に基づき、ロールの配替えを行う。さらに、グラインダーは、2段重ねで搬送されるワークロールを上下のロールに分離し、それぞれを、研削状態にセットする機能を備えた全自動グラインダーを配置した。これらにより、仕上げワークロール組み替え、搬送、研削の全自動計算機制御を達成した。

7 まとめ

千葉製鉄所第3熱延工場は1995年5月予定通り稼働し、現在レ

イティングアップの途上にあるが、この概要について報告した。 本工場の特徴は下記のとおりである。

- (1) 世界初の連続圧延を実現するミルとしての必要機能の充足。
- (2) 高品質・高精度圧延を実現する、センサー、制御の住組の充 実。
- (3) 上記を活用した、極薄鋼板あるいは良加工性熱延鋼板等新製品の製造。
- (4) 連鋳直結レイアウト採用による省エネルギー。
- (5) 管制室統合、ロールショップ全自動化による大幅な合理化。

参考文献

- 日本鉄鋼協会編:「わが同における最近のホットストリップ製造技術 (第2版)」、(1987)、p.152, 36, 154
- 日本鉄鋼協会編:「板圧延の理論と実際,特別報告書No.36」 (1984), 158