KAWASAKI STEEL TECHNICAL REPORT No.30 (August 1994) Special Issue on LSI

High Quality Dielectric Film for 0.35-µm Design Rule Application by O3-TEOS-CVD Using Ethanol Pre-treatment

Nobuyoshi Sato, Tadashi Nakano, Tomohiro Ohta

Synopsis :

A new surface treatment involving the spin-coating of ethanol on a substrate prior to O3-tetraethylorthosilicate (TEOS) deposition by atmospheric pressure chemical vapor deposition (APCVD) was found to be very effective of improving the gap-filling properties and film quality. The deposited film has a flow-like surface shape, and can be used to fill trenches of 0.3µm width and 1.2µm depth, which could not be filled by conventional O3-TEOS APCVD. The effects of surface treating by some other organic solvents are also reported and a possible mechanism is presented.

(c)JFE Steel Corporation, 2003

The body can be viewed from the next page.

High Quality Dielectric Film for 0.35- μ m Design Rule Application by 0₃-TEOS-CVD Using Ethanol Pre-treatment^{*}

Nobuyoshi Sato Senior Engineer (CVD Gr. Leader), Process Engineering Dept., Nihon Semiconductor. Inc.**

Tadashi Nakano Senior Researcher, LSI Research Center, High-Technology Res.

Labs

Tomohiro Ohta Dr. Sci., Senior Researcher, LSI Research Center, High-Technology Res Labs.

Synopsis:

A new surface treatment involving the spin-coating of ethanol on a substrate prior to O_3 -tetraethylorthosilicate (TEOS) deposition by atmospheric pressure chemical vapor deposition (APCVD) was found to be very effective for improving the gap-filling properties and film quality. The deposited film has a flow-like surface shape, and can be used to fill trenches of $0.3 \,\mu$ m width and $1.2 \,\mu$ m depth, which could not be filled by conventional O_3 -TEOS APCVD. The effects of surface treating by some other organic solvents are also reported and a possible mechanism is presented.

1 Introduction

A notable trend of LSI chips in recent years is the multiplication of metal wiring from single-layer to multi-layer, all reflecting the increasing density of transistors. And, the formation of insulating films in the multi-layered wiring calls for the following three requirements so as to reduce the irregularities of underlayer geometry: (1) excellent capability for filling deep trenches on the underlayers, (2) relaxation of gaps between the trenched portion and untrenched portion with the formation of insulating films, and (3) formation of high quality insulating films with low moisuture content to insure the corrosion resistance of wiring.

In the past the main source of insulation surface coating for LSI wires was SiO_2 film made by plasma enhancement chemical vapor deposition (P-CVD) or atmospheric pressure chemical vapor deposition (APCVD). Increased surface irregularities resulting from submicron LSIs, however, have made it increasingly difficult to fill wiring trenches completely with these films. In order to solve this problem, the application of laminated films is being considered, in which an O₃-TEOS*** film is formed first by depositing on the wiring a P-TEOS SiO₂ film with relatively good film quality and coating geometry, and then by subjecting this film to a plasma treatment.¹⁻³ This plasma treatment is performed to eliminate the underlayer dependency**** of the O₃-TEOS film.⁴⁻⁶ When this process is applied, it becomes possible to fill wiring gaps with as aspect ratio***** of up to approximately 2.⁷ Presented in this paper is O₃-TEOS film deposition using an ethanol pre-treatment as a method for filling an insulating film between wiring gaps with an aspect ratio of greater than 4 to endow devices with ever finer geometry.^{8,9}

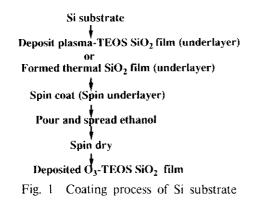
In addition to using an underlayer of P-TEOS film, the gap-filling properties and film quality of a O_3 -TEOS SiO₂ film are examined for thermal SiO₂ films as well, and cases are evaluated in which ethanol solvent molecules were adsorbed to the underlayer by the ethanol treatment. Furthermore, the existence of voids (micro-

^{*} Originally published in Kawasaki Steel Giho, 26(1994)2, 71-75

^{**} Former Senior Researcher, LSI Research Center, High-Technology Res. Labs., Technical Res. Div.

^{***} TEOS (tetraethylorthosilicate, Si(OC₂H₅)₄): TEOS gas is resolved by plasma into SiO₂. An O₃-TEOS SiO₂ film

reacts with O₃, becoming SiO₂.


^{****} Underlayer dependency: a phenomenon in which the deposition speed of an SiO_2 film to be grown on the underlayer is different between AI and SiO_2 films.

^{*****} Aspect ratio: aspect ratio r is defined as r = b/a, where a is the trench width and b is the depth.

scopic depletion of a film) in a O_3 -TEOS SiO₂ film and the resulting surface irregularities are observed.

2 Experimental

Shown in **Fig. 1** is a process sequence, in which an SiO_2 film to serve as an underlayer is deposited on a 6" Si substrate, 3 cm³ of an organic solvent is then dropped on to it after increasing the rotation speed to 2 000 rpm, and spin coating and spin drying (at room temperature) are performed. After spin drying, the substrate is taken out of the spin-coater for deposition of an SiO_2 film by means of O₃-TEOS CVD apparatus.

2.1 Film Deposition Apparatus and Deposition Conditions

Figure 2 shows the Alcan-Tech APT-4800 O₃-TEOS CVD apparatus that was used. A particular feature of the apparatus is the dispersion head with slit gas nozzles arranged in parallel that moves transversely to improve the uniformity of deposition rate. Another feature of the apparatus is that the Si substrate is positioned facing downward to reduce the possibility of particles being adsorbed to its surface. Table 1 shows the O₃-TEOS SiO₂ deposition conditions for the apparatus: temperature, 413°C; O₃ concentration, 120 g/Nm³; TEOS bubbling N₂, 1.7 slm (bubbling temperature = 65°C); carrier N₂, 18 slm. Under the conditions, O₃ becomes about 5% of the O₂ generated.

2.2 Underlayers and Organic Solvents for the Underlayer Treatment

As the underlayer for an O_3 -TEOS SiO₂ film, a plasma TEOS SiO₂ film and a thermal SiO₂ film were formed (thermal SiO₂, for 30 min in O₂ gas at 950°C). The plasma TEOS SiO₂ film was used as the underlayer sample to eliminate any underlayer dependency for the O₃-TEOS SiO₂ film. Three levels of plasma TEOS SiO₂ film, each having a different deposition temperature and

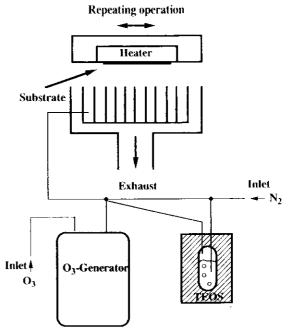


Fig. 2 O₃-TEOS CVD apparatus

Table 1 O₃-TEOS SiO₂ film deposition conditions

Temperature	(°C)	413
O ₃ concentration	(g/Nm³)	120
TEOS bubbling N ₂	(cm³/s)	28
Bubbling temperature	(°C)	65
Carrier N ₂	(cm³/s)	300

Table 2	Plasma-TEOS	SiO ₂	film	deposition	condi-
	tions				

		Condition 1 Condition 2 Condition 3			
Temperature	(°C)	350	400	420	
TEOS flow rat	te (cm³/s)	3.0	3.8	2.3	
O ₂ flow rate	(cm ³ /s)	67	5.8	35	
Pressure	(Pa)	293	667	533	

impressed frequency, were used as shown in **Table 2**. Conditions 1, 2 and 3 were used in three independent types of apparatus. The thermal SiO₂ film was used to simulate the case of an O₃-TEOS SiO₂ film being used as the first inter-layer insulating film on an underlying thermal SiO₂ film after a transistor gate had been formed on it. As underlayer treatment reagents, such solvents as methanol, IPA, acetone, diethylether, cyclohexane, and TEOS were tested as well.

KAWASAKI STEEL TECHNICAL REPORT

3 Gap-Filling Properties and Film Quality of an O₃-TEOS SiO₂ Film Using an Ethanol Pre-treatment

3.1 Cases in a Plasma TEOS SiO₂ Film Used as the Underlayer

3.1.1 Gap filling properties and film quality

The SEM photographs in Photo 1 show the gapfilling geometry of an O₃-TEOS SiO₂ film in cases of a plasma TEOS SiO2 film being used on the wiring pattern as an underlayer. The photographs show that the ethanol pre-treated O3-TEOS SiO2 film had superior gap-filling properties, providing a film with a smooth top surface. Photo 1 (a) shows an underlayer before the formation of O₃-TEOS; this underlayer consists of a $0.3 \,\mu m$ plasma TEOS SiO₂ film deposited on a wiring pattern having a trench of $1.0 \,\mu m$ in depth, $0.5 \,\mu m$ in width, and 1.0 μ m in pitch, which provides an aspect ratio as large as 4 for the trench before the O₃-TEOS SiO_2 film is formed. (b), (e) and (d) show the gap-filling characteristics of an O₃-TEOS SiO₂ film without the ethanol pre-treatment. (b) and (c) showing the gap-filling progress indicate that an O₃-TEOS SiO₂ film was deposited with uniform thickness on the underlayer, resulting in poor gap filling and a film with considerable surface roughness and coarseness. (d) showing the surface after gap filling indicates the formation of voids, a sign of low film quality and imperfect filling of wiring gaps. (e), (f) and (g) show the gap-filling characteristics of an ethanol pre-treated O₃-TEOS SiO₂ film. (e) and (f) showing the gap-filling progress indicate that the O₃-TEOS SiO₂ film has a smoothly flowing surface. It is apparent from (g), showing the surface after gap filling, that there are no voids in the O_3 -TEOS SiO₂ film and that the wiring gaps have been completely filled.

These results established that an ethanol treatment of a plasma TEOS SiO_2 film allows an O₃-TEOS SiO_2 film to flow evenly into wiring gaps to thus form a good, void-free insulating film.

3.1.2 Pre-treatment with different organic solvents

An evaluation of the gap-filling properties of O_3 -TEOS SiO₂ films treated with solvents other than ethanol confirms that the latter was far superior to the others.

Photo 2 shows the gap-filling characteristics of O_3 -

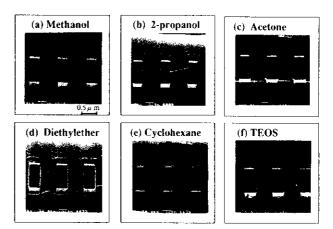


Photo 2 Cross section of O₃-TEOS films with treatment by other organic solvents (Samples were lighly etched for several seconds with 1:20 BHF)

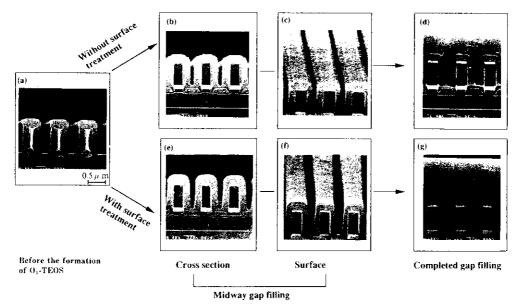


Photo 1 Cross section and surface of O_3 -TEOS films with and without ethanol surface treatment (Samples were lightly etched for several seconds with 1:20 BHF)

No. 30 August 1994

TEOS SiO₂ films after pre-treating with organic solvents other than ethanol a plasma TEOS SiO₂ film deposited as an underlayer on the wiring pattern. Photo 2 (a), the cross-section of a methanol pre-treated O₃-TEOS SiO₂ film, shows that voids in the film were not eliminated, and that filling between the wiring gaps was worse than in the case of an untreated film. (b), (c), (d), (e) and (f) respectively showing the case when IPA, acetone, diethylether, cyclohexane, and TEOS was used, show that voids were formed in the O₃-TEOS SiO₂ film and that filling between the wiring gaps was also imperfect.

3.1.3 Effect of plasma TEOS SiO₂ film quality

Photo 3 shows the gap-filling properties and film quality of O₃-TEOS SiO₂ films in the cases of the underlying plasma TEOS SiO₂ film being formed under three different conditions of deposition temperature and frquency of the impressed voltages. Photo 3 (a) and (d) represent the cases for which the O₃-TEOS SiO₂ film was formed under condition 1 in Table 2, (b) and (e) under condition 2, and (c), (f) and (g) under condition 3. In these cases, (a), (b) and (f) show an untreated underlying plasma TEOS SiO2 film, (d), (e) and (f) show one with an ethanol pre-treatment, and (g) shows the one with the plasma NH₃ treatment. These photographs confirm that, irrespective of the deposition conditions of the underlying TEOS SiO₂ film, the untreated underlayer tended to result in a poor O₃-TEOS SiO₂ film, including voids in the film, and that the gap-filling properties were not improved either. On the other hand, it can be seen from the photographs that the film quality and gap filling of the O_3 -TEOS SiO₂ film was improved irrespective of the deposition conditions for the underlying plasma TEOS SiO₂ film. While the plasma NH₃ treatment of the underlying plasma TEOS SiO_2 film improved the quality of the O₃-TEOS SiO_2 film, no appreciable improvement is apparent in the gap-filling properties. From these result, it was confirmed that, when a plasma TEOS SiO_2 film is being used as an underlayer, quite a wide processing margin is provided by the ethanol treatment, and that an effective tretment can be obtained even with a TEOS SiO_2 film deposited under different conditions.

3.2 Case in a Thermal SiO₂ Film Used as the Underlayer

Photo 4 shows the gap-filling capability of an O₃-TEOS SiO₂ film with a thermal SiO₂ underlayer on a poly-Si wiring pattern. The underlayer consist of a 250-Å-thick thermal SiO₂ film deposited on a trench pattern of $0.5 \,\mu\text{m}$ in depth, $0.3 \,\mu\text{m}$ in width, and $0.6 \,\mu\text{m}$ in pitch. The aspect ratio between the wiring gaps before the O₃-TEOS SiO₂ film was formed is quite high at about 2. Photo 4 (a) shows the case of the underlying thermal SiO₂ film being untreated; however, as in the case shown in Photo 1 (c), it was found that the surface of the O₃-TEOS SiO₂ film was extremely irregular. Photo 4 (b), the result obtained after an ethanol pretreatment of the underlying thermal SiO₂ film, confirms that the quality of the O3-TEOS SiO2 film was substantially better. It was also confirmed that the gap-filling properties were substantially better although minor key holes remain between the wiring gaps. Photo 4 (c), showing the appearance of (b) after 30 minutes' annealing at about 700°C, indicates that quite a smooth surface could be achieved.

When a thermal SiO_2 film is used as an underlayer, it is assumed that an O_3 -TEOS SiO_2 film is applied as the first inter-layer insulator near the transistor gate. Since, in this case, it is difficult to apply a plasma treatment to

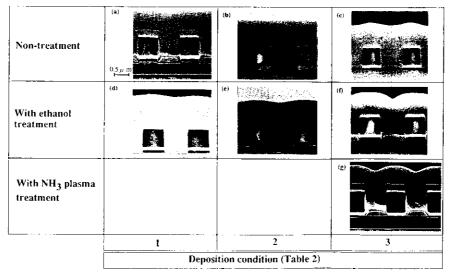


Photo 3 Dependence of the gap-filling properties and film quality of an O₃-TEOS SiO₂ films on the plasma-TEOS-SiO₂ film deposited under different conditions

KAWASAKI STEEL TECHNICAL REPORT

Photo 4 O_3 -TEOS SiO₂ film deposited on thermal SiO₂

the underlying SiO_2 film without causing electrical damage, the application of the non-damaging ethanol treatment to the underlayer is quite effective.

4 Mechanism for Improvement of the Gap-Filling Properties of O₃-TEOS SiO₂ Films Using an Ethanol Pre-treatment

4.1 Analysis of the Ethanol-Treated Underlayer Surface by High-Sensitivity Reflection FTIR (RAS)

Ethanol treatment improved the gap-filling properties and quality of O_3 -TEOS SiO₂ films. In order to clarify the mechanism for this, the surfaces of ethanol-treated substrates were examined by means of high-sensitivity reflection FTIR (RAS).

Figure 3 shows the differential spectrum obtained after subtracting the high-sensitivity reflection FTIR spectrum of an ethanol-treated plasma TEOS SiO_2 underlayer from that of an untreated one. C-H bond-stretching vibration peaks are apparent at 3 020 cm⁻¹, 2 930 cm⁻¹ and 2 860 cm⁻¹.

These results lead us to believe that the ethanol treatment caused ethoxyl and the like to be chemically adsorbed to adsorption sites on the surface of the underlying plasma TEOS SiO_2 film.

Accordingly, we consider that the quality of an O₃-

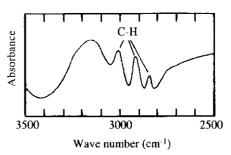


Fig. 3 High-sensitivity reflection FTIR spectrum of an ethanol-spin-coated substrate subtracted from that of an untreated substrate

TEOS SiO_2 film was improved and the wiring gap-filling properties enhanced mainly because treating the underlayer with ethanol or methanol caused these solvent molecules to be adsorbed to the underlayer surface. Based on this assumption, a mechanism will next be considered.

4.2 Mechanism for Gap Filling by an O₃-TEOS SiO₂ Film Using an Ethanol Pre-treatment

Figure 4 shows the mechanism by which an ethanol pre-treatment would improve the gap filling properties and quality of an O₃-TEOS SiO₂ film. A case will be considered of a thin plasma TEOS SiO₂ film being formed on an irregular wiring surface. Silanol sites (represented by A's in Fig. 4) cover most of the plasma TEOS SiO₂ film surface, leaving only a few areas without them. On the other hand, the atmospheric CVD reaction between O3 and TEOS forms several types of O₃-TEOS SiO₂ films, of which the most highly active films with a short lifetime are rapidly adsorbed to the silanol adsorption sites. In this way, since a highly active film would form an O₃-TEOS SiO₂ film without flowing into the trenches, the film geometry conforms to the underlayer geometry, resulting in poor gap-filling properties.

The formation of voids in a film will next be considered. While the deposition speed is low in the areas where there is no silanol, it is high where there is silanol, and this difference in deposition speed causes voids to develop in a film; in other words, the difference in deposition speed is responsible for voids in the O₃-TEOS SiO₂ film. On the other hand, when the underlayer has been treated with ethanol, the underlying silanol sites are filled with ethoxyl and the like (represented by R's in Fig. 4), and the underlayer surface becomes covered with ethoxyl. This can be expected from the results of high-sensitivity reflection FTIR shown in Fig. 3. In this way, the highly active films with a short lifetime cannot be adsorbed to the underlayer, and form oligomers by a repeated dehydrated condensation reaction between the films (polymers). The oligomers, which have a long lifetime, would continue filling the

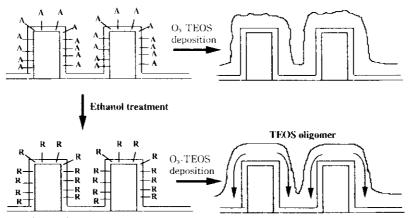


Fig. 4 Mechanism of gap filling with and without ethanol surface treatment (A, OH site; R, OC₂H₅ site)

gaps as they flow over the surface. The foregoing is the currently logical mechanism for the formation of an ethanol pre-treated O_3 -TEOS SiO₂ film.

5 Conclusions

When forming an SiO₂ film by means of atmospheric O₃-TEOS CVD, the gap-filling properties and quality of the film can be improved by pre-treating the underlayer with an organic solvent. Conventional underlayer pretreatment, which primarily uses plasma, is limited to inter-layer insulating films separated from the substrates because of possible damage by the plasma. In addition, it is known that changes inside the chamber make such a plasma treatment unstable. On the other hand, the ethanol treatment described in this report contributed to a damage-free improvement of film quality and enhanced filling of trenches with a high aspect ratio of more than 4. In addition, since the ethanol treatment does not require the use of a deposition chamber, adverse effects on the formation of the underlying plasma TEOS SiO₂ film do not have to be considered.

The authors propose that the new, inter-layer insulating film planarization method described here is one of the important future techniques for forming a highly reliable multi-layer wiring pattern in future processes involving very large-scale integration.

References

- K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda: J. Electrochem. Soc., 137(1990), 2883
- M. Matsuura, Y. Hayashide, H. Kotuni, and H. Abe: Jpn. J. Appl. Phys., 30(1993), 1530
- 3) C. Chiang, K. Yoshioka, N. Cox, J. Ren, and D. B. Fraser: "APCVD SiO₂ film using O₃ and TEOS for Intermetal Dielectric Application," VLSI Multilevel Interconnection Conference, IEEE, Santa Clara, CA (USA), (1992), 115
- K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda: "Dependence of Deposition Rate on Base Materials in TEOS/O₃ APCVD," VLSI Multilevel Interconnection Conference, IEEE, Santa Clara, CA (USA), (1990), 187
- 5) K. Kishimoto, M. Suzuki, T. Hirayama, Y. Ikeda, and Y. Numasawa: "Planarized SiO₂ Interlayer Formed by Two Step O₃/TEOS APCVD and Low Temperat Annealing," VLSI Multilevel Interconnection Conference, IEEE, Santa Clara, CA (USA), (1992), 149
- K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda: J. Electrochem. Soc., 138(1991), 550
- T. Kubo, Y. Ikeda, and Y. Numazawa: Dai 39 kai-Shunki-Oyobutsuri-Gakkai-Yokoshu, (1992), 596
- N. Sato, T. Nakano, H. Yamamoto, and T. Ohta: Jpn. J. Appl. Phys., Tet. 39(1993), 110
- 9) N. Sato, T. Nakano, and T. Ohta: "Improving Gap-filling Property and Quality of O₃-TEOS NSG film by Surface Pre-Spin-Coating of Ethanol," VLSI Multilevel Interconnection Conference, IEEE, Santa Clara, CA (USA), (1993), 155