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1 Introduction

Recent years have seen such remarkable progress in
rolling theory that analyses based mainly on the slab
method have been considered almost complete in the
field of plate rolling. However, due to restrictions inher-
ent in the slab method, these analyses have mainly been
applied to plane-strain rolling, It cannot be said that
problems related to three-dimensional deformation such
as bar and shape rolling are thoroughly analyzed. Large-
scale simulation such as that by the finite element
methed is effective in solving such problems of large
deformation. In treating three-dimensional deformation,
however, the finite element method sometimes poses
problems of computer memory size and computation
time. Small-scale computations are sometimes effective.

In addition to the finite element method, the upper
bound technique is also available. If the shape of defor-
mation can be expressed by a simple velocity field, a
velocity field close to the true value can be obtained by
adjusting parameters in a function expressing the veloc-
ity field. Reported analyses by the upper bound tech-
nique include a method in which a velocity field
approximated by a cubic function is optimized using the

* Originally published in Kawasaki Steel Giko, 20(1988)1,
pp. 1-6

46

Synopsis:

Three-dimensional rolling of rectangular bar is ana-
lvzed. This analvsis is based on the upper bound theorem.
The total energy dissipation rate is minimized by the sim-
plex method which is one of the direct methods of non-
linear optimization.

ft is assumed that kinematically admissible velocity is a
cubic function of the distance from the entry plane and
the cross section of rolled stock keeps plane in the roll
gap.

Though the velocity field is simple, the calculation results
of the spread and rolling torque agree well with lead-
model experiments. From these results, deformation energy
efficiency in case of flat rolling of the rectangular bar
becomes maximum in the rolling condition of Ly/H, = 1.

Ritz method", and methods in which nonlinear opti-
mization is conducted to obtain an optimum velocity
ficld>¥,

The authors attempted to analyze the flat rolling of a
rectangular bar by the latter method of nonlinear opti-
mization”, The rolling of rectangular bars with flat rolls
to produce wire rod and bars is a new rolling method in
the rougher mill that has been put into practical use as
a type of grooveless rolling”; because of the relatively
simple shape of deformation, it is a working method
suitable for analysis by the upper bound technique.

This report gives a comparison between calculation
results and results of lead-model experiments, as well as
results of an examination of deformation energy effi-
ciency based on the calculation results.

2 Analysis Method

Principal assumptions made for the analysis are
shown below:
(1) The material is a rigid perfectly plastic solid.
(2) The material is noncompressible.
(3) The cross section of the stock remains plane during
rolling,
{4) Rolls used in rolling are rigid,



s

I
Entry Exit
plane plane

Fig. 1 Coordinates of flat rolling analysis

(5) The tangential stress r on roll surfaces is given by
T =mk (m is the friction constant and k is the
shear yield stress).

(6) Bends and cambers do not occur in the rolled steel,

If coordinates and symbols as shown in Fig. 1 are
used and a certain increment of deformation occurs in
supposed steady deformation, then the following for-
mula holds in accordance with the upper bound theo-

rem®:

Mo < Lﬁ ket v + jrkmv%dr

" Lmv%ds ....................... N

where T: Torque for one roll (kgf- mm)
w: Angular velocity around a roll (rad/s)
k: Shear yield stress (kgf/mm?)
&eq: Equivalent plastic strain rate (s7))
Iy Plane of discontinuity of velocity
S Surface in contact with a roll

Avr: Amount of discontinuity of velocity—relative

slip velocity {(mm/s)

From left to right the terms on the right side of Eq.
(1) represent energy dissipation rates by plastic deforma-
tion, discontinuity of velocity, and friction. The super-
script k represents a kinematically admissible state.

It is supposed that the external shape, i.e., shape of
free surface w during steady rooling, is expressed by a
function of longitudinal position x only, and that this
shape is approximated by a cubic function”. Further-
more, the cross section before rolling keeps a plane, as
mentioned in assumption (3), and it is assumed that the
shape of the free surface is uniform in the thickness
direction. As shown in Fig. 1, the entry plane is denot-
ed by x =0, the exit plane by x = L4, and the stock
height and width before rolling by H, and B, respec-
tively.

Since w=B, at x=0, w=B; at x=1L,; and
dwl/dx =0 at x = L,, the external shape is given by
the following equation:

2
w(x) =By + Cox + (3 -wy - By — 2C0Ld) (f;)
d

3
+ (CoLy — 2weBo) (i) ........... 2)
Lq

C, represents the ratio of change of the flow line of
the external shape in the entry plane; wy represents the
spread ratio in the exit plane.

The stock height at a longitudinal position x is given
by Eq. (3).

H(x)=H, + 2R - 2yR* — (Ly— 32 .. (3)

where R is the roll radius and H is the stock height on
the exit side, Since position x, of the neutral point is
also unknown, it is taken as the adjusting parameter.

When these variables are given, the stock velocity U,
at the neutral point in the x-direction is expressed by
the following equation using the roll radius R and angu-
lar velocity around a roll :

U __Re (4)

"Y1+ H(x)?
Since the mass flow is constant, the longitudinal stock
velocity v, at a point in the longitudinal direction (x-
direction) is given using U, as follows:

_Usx H(xg) x wlx,)
Hix) x w(x)

Since the transverse velocity v, is zero at the middle
of the stock width and changes uniformly toward the
transverse edges in accordance with assumptions (3) and
{6), vy is given by the following equation:

X

Oy = 0y X W(X) X —2 e (6)

w(x)

Since the velocity v, in the thickness direction is zero
at the middle of the stock thickness and changes uni-
formty toward the surfaces in contact with rolls in
accordance with the assumptions (3} and (6), v, is given
by the following equation:

_F
H(x)

In other words, velocities in the x-, y- and z-directions
in each part of the stock being deformed can be found
if three variables, i.e., the parameters expressing exter-
nal shape C, and w; and the parameter expressing the
position of neutral point x,, are given. The plastic strain
rate and equivalent plastic strain rate can be found from
these velocity fields by Eq. (8)”, and the energy dissipa-
tion rate can be calculated from these strain rates, In
this study, these calculations were made by the numeri-
cal integration of the analysis region.

U, = v, x H'x) x
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The velocity field nearest to the true value can be
obtained if a stationary condition for the total energy
dissipation rate ¢ and the steady condition, in which
the velocity field after the satisfaction of this stationary
condition coincides with the initially assumed velocity
field, are both satisfied by appropriately selecting these
three variables to express the external shape.

In this report, the simplex method®, which is one
direct calculation method for nonlinear optimization,
was used for the optimization of results of calculation
by the upper bound technique, In the simplex method,
function values at apexes of simplexes are compared and
the search direction is determined by repeating the

( Start |

Read data
R, Ho,Bo,Hi,w,m

/

/

reflection, expansion, and contraction of the simplexes,
as shown in Fig. 2. When the number of degrees of
freedom is small, the convergence characteristic is
usually good, making this an effective calculation
method. The flow of calculation is schematically shown
in Fig. 3.

Xe
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Xo Xo Xo
X X Xa
(1) Reflection {2) Expansion (3) Contraction

Fig. 2 Schematic representation of direct searching
by simplex method
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Fig. 3 Flow chart of calculation
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3 Experimental Method

A comparison was made between results of an analy-
sis by the upper bound technique and those of lead-
model experiments” using a stock of almost the same
width and thickness as that of a rectangular bar, Flat
rolling of a rectangular bar corresponds to grooveless
rolling and has recently attracted attention as a new
rough rolling method for wire rods and bars. Conditions
used in calculation and the experiment are given in
Table 1.

Table 1 Conditions of calculation and experiment

Roll diameter 200 mmg
Material 99,9994 Pb
Stock height Ha 40, 30, 23, 18 mm
Width/height BojH, 0.5,1.0,2.0

Reducticn i 10, 20, 30, 40%

The selection of these conditions was based on the
characteristics of the rougher and intermediate mill jn
the bar mill at Kawasaki Steel's Mizushima Works. A
1/3 scale model was used in the experiment. Although
the calculation conditions selected were equivalent to
the experiment conditions, the range of stock width and
friction conditions in the calculation conditions was
wider than the experimental range.

The material for the model used in the experiment
was lead of 99.99% purity, which recrystallizes at room
temperature and is considered to be a good stock for
simulating the hot rolling of steel'”. The rolling exper-
iment using the model was conducted at room tempera-
ture. After each rolling pass, the roll surface was ground
with emery paper (# 300) and then degreased with ben-
zine to prevent a decrease in the coefficient of friction
due to the adherence of lead. The reduction ratio was
varied between 10 and 400%. At high reduction ratios,
in some cases the leading end of the stock did not enter
rolls. On such occasions, the leading end of the stock
was pre-rolled to reduce its thickness and was then fed
into the rolls. In the present range of experimental con-
ditions, slip did not occur during steady rolling.

When pure lead is rolled, irregularities on the free
surface after rolling become marked, making accurate
size measurement difficult. For this reason, before roll-
ing stocks were scribed with gauge lines and the average
width after rolling was found by determining elongation
from changes in distance before and after rolling.
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4 Comparison hetween Experiment and
Calculation Results; Discussion

The relationship between the spread ratio and reduc-
tion determined from the average width is shown in
Fig. 4. In the rolling of a stock of almost the same
width and thickness as in this experiment, the width
after rolling increased exponentially with increasing
reduction, as already reported'™ the smaller the stock
height H relative to the roll diameter D, i.e., the higher
the ratio D/H, the more pronounced this tendency
becomes,

¢.3
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Bo/Ho=110

D/Hy
Qf 5.0
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0.2F |0 87
v| 111

"R v

=

[+¢]
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Fig. 4 Relationship between reduction and spread
(experimental)

Various empirical formulas for expressing spread dur-
ing the rolling of wire rods and bars have been pro-
posed'? !> Among others, Shinokura’s equation'®, in
spite of its simplicity, is considered applicable to various
groove-type rolling methods.'® Shinokura’s equation is
used to predict stock width after rolling on the basis of
the geometrical shape before rolling, as illustrated in
Fig. 5.

Bi_ =g X ____L_d__x An L 9
By Hy+ 28y A
where Ay: Cross-sectional area outside the groove
(mm?)

Ag: Cross-sectional area before rolling (mm?)
a: Experiment coefficient
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Fig. 6 Relationship between Shinokura’s spread

equation and width spread (experimental)

The spread ratio of the square bar being flat-rolled in
this experiment can be reexpressed in Shinokura’s equa-
tion as shown in Fig. 6. It is apparent from this figure
that results of an experiment conducted with various
stock heights and reductions are approximated by a
straight line. The slope of the correlation line intersect-
ing the origin is found to be 0.571 from experimental
values by the least square method. This value corre-
sponds to the coefficient @ in Shinokura’s spread equa-
tion.

Results of calculation by the upper bound technique
at the friction constant m of 1.0 are similarly graphed in
Fig. 7. These calculated results can also be approximated
by a straight line intersecting the origin when expressed
by Shinokura's equation. The slope of this line is 0.602,
or almost equal to the above-mentioned value obtained
in the lead-model experiments. The friction constant m
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Fig. 7 Relationship between Shinokura’s spread
equation and width spread (calculated m = 1)

0.8
D =200 mmeg
Ho=40,30,23,18 mm
0.7+ Bo/He=110

Pb sq.-flat rolling
experimental result

0.6} N s
05k

O4r

P
L4

Coefficient of Shinokura’s spread equation

1
0.5 10

Friction constant m

=

Fig. 8 Relationship between friction constant and
coefficient of Shinokura’s spread equation

of 1.0 means that t = k; that is, the stock is subjected
to a shear yield stress on the roll surface (sticking).
Since the slope value a in Shinokura’s equation is
almost equal to the a value in calculations of spread for
m = 1.0, it was surmised that a state very close to stick-
ing obtained in this experiment.

To further investigate this matter, the slope @ m Shi-
nokura’s equation was determined by varying the fric-
tion constant m from 0.5 to 1.0 in 0.1 steps. Results of
this calculation are shown in Fig. 8. It is apparent that
the slope in Shinokura’s equation decreases as the fric-
tion constant m decreases from 1.0, and that this tend-
ency to decrease becomes less marked as the constant
m approaches 0.5. In other words, spread decreases with
decreasing friction constant; an equivalent finding was
reported elsewhere!”. The a value of 0.571 obtained
from the lead-model experiment corresponds to a fric-

KAWASAKI STEEL TECHNICAL REPORT



Nondimensional torque
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Open mark: Calculated result
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Fig. 9 Accuracy of calculation results of rolling torque

tion constant m of 0.93 when it is estimated from Fig.
8; thus it may be said that the friction conditions in the
experiment were quite close to sticking.

A comparison between calculated results for rolling
torque and measured values is given in Fig. 9. In this
figure, the ordinate represents non-dimensional torque
values obtained by dividing torque by the cross-sectional
area after rolling H,- B, the roll radius R, and the
shear yield stress k. Dashes denote calculated results
and the solid lines denote measured results. The plotted
data in the four sections of this figure represent stock
heights of 40, 30, 23 and 18 mm, respectively, from left
to right. In each case, calculated values were in virtual
agreement with measured values, although the former
tend to be higher than the latter, The reason the calcu-
lated values were higher than the measured values is
that in the upper bound technique used, calculated
values cannot be lower than the true value.

When these results calculated by the upper bound
technique were compared with results of the lead-model
expetiment without lubrication, good agreement was
observed in both the spread ratio and torque at m of
1.0, confirming the validity of the calculations.

5 Examination of Deformation Energy Efficiency

Since the energy dissipation rate during rolling can be
determined by the upper bound technique, it is possible
to examine effects of wvarious rolling conditions on
deformation energy efficiency.

One of the principal purposes of rolling is to elongate
materials, However, dissipation of deformation energy
not contributing to this elongating is required to some
degree due to the additional shearing deformation dur-
ing rolling. For comparison based on a case where the
same elongation is given, deformation energy efficiency
n is given by the following equation'®, when rolling
energy per unit volume is denoted by a, and the

No. 19 November 1988

energy per unit volume required to obtain the same
elongation given by uniaxial tension is denoted by a.,*:

*®
p= (10)
ay
Gu* = Ko A e (11)
2T
... S 12
N A - R-(1+ ¢) (12)

where 7: Deformation energy efficiency
ay*: Ideal deformation energy (kgf/mm?)
a,: Energy per unit volume (kgf/mm?)
Kim: Mean deformation resistance (kgf/mm?)
A: Elongation (= /,/15)
Ay: Cross-sectional area after rolling
¢: Forward slip

Since a,, includes the additional shearing deformation
energy, friction energy, etc. present during rolling, this
value is higher than a,* and » usually shows values
lower than 1. If the value of » is high, the energy
necessary for giving the same elongation to a stock
being rolled is low. Therefore, high # values are desir-
able for reducing rolling power requirements.

Effects of stock height and width on deformation
energy efficiency are shown in Fig. 10 and 11 respec-
tively. In these figures, reduction is plotted as the ordi-
nate, and deformation energy efficiency as the abscissa.
It is apparent from these figures that the larger the
stock height relative to roll diameter, the higher the
deformation energy efficiency. This tendency is great at
high reductions. Furthermore, for stocks of the same
height, the larger the stock width, the higher the defor-
mation energy efficiency.

These phenomena can be explained mainly by the
spread tendency of the rolled stock. The greater the
stock height relative to roll diameter and the wider
the stock relative to stock height, the smaller will be the
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Fig. 11 Effect of stock width on deformation

energy efficiency

spread of a stock being rolled. Deformation energy effi-
ciency increases because the elongation of the stock is
large at the same reduction ratio, for the reason men-
tioned above,

This deformation nergy efficiency # can be expressed
by the mean roll gap ratio Ly/H,, using the mean stock
thickness H,, given by Eq. (13), as shown in Fig. 12.

_H[]-I‘-H]
2

If the ratio of stock width to stock height is constant,
n can be expressed with good accuracy by a straight line
with respect to Ly/H, and shows maximum values
ranging from 0.35 to 0.4 at Ly/H,, of about 1.0. The
reason n shows peaks with respect to Ly/H,, seems to
be that the ratios of energy dissipation rates by plastic
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H,="0T 8 (13)
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Fig. 12 Relation between mean roll gap ratio Ly/H,,
and deformation energy efficiency
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Fig. 13 Effect of each energy dissipation rate on

deformation energy efficiency

deformation, friction, discontinuity of velocity, etc. to
the total energy dissipation rate change with rolling con-
ditions. These ratios were calculated for D/H, of 5;
results of the calculation are shown in Fig. 13. In this
figure, the ratios of energy dissipation rates by plastic
deformation, friction, and discontinuity of velocity to
total energy dissipation rate and deformation efficiency
are plotted on the ordinate downward from the top. It is
evident from this figure that the ratio of energy dissipa-
tion by friction increases with increasing Lo/ H. and
that the ratic of energy dissipation by discontinuity of

KAWASAKI STEEL TECHNICAL REPORT
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velocity increases with decreasing L4/L,. In other
words, under rolling conditions with L4/ H;, not close to
1.0, the degree of increase in either the ratio of energy
dissipation by friction to the total energy dissipation
rate, or that by the discontinuity of velocity, wili be
larger than the degree of decrease in the other. There-
fore, the ratio of energy dissipation by plastic deforma-
tion will show a relative decrease. This seems to explain
why 7 shows a peak at Ly/H,, of about 1.0.

The foregoing suggests that to optimize the deforma-
tion energy efficiency in grooveless rolling, it is neces-
sary that rolling conditions such as roll diameter and
reduction be such that the value of Ly/H, is close to
1.0. In the rolling of wire rods and bars, both the stock
thickness and width are reduced. Therefore, if the
aspect ratio after a pass is excessive, the ratio H/B at
the next pass increases and the extent of spread
becomes large, resulting in a decrease in deformation
energy. Accordingly, it is important to optimize the total
deformation energy efficiency in consideration of these
points.

6 Conclusions

Results of a three-dimensional analysis of rolling of a
rectangular bar by the upper bound technique were
compared with those of lead-model experiments and the
deformation energy efficiency was examined using the
calculation results, The foliowing results were obtained,:
{1) The analysis results were compared with the experi-

ment results obtained from the rolling of lead
without lubrication. Both showed almost the same
spread at the friction constant m of 1.

(2) Results of calculation of torque were in near agree-
ment with the experiment results of lead rolling,
though the former showed slightly higher values.

(3} Deformation energy efficiency shows maximum
values at specific reductions. The larger the stock
height relative to the roll diameter and the larger
the stock width relative to the stock height, the
higher the deformation energy efficiency will be.

(4) The deformation energy efficiency n shows a peak
at Ly/Hy, of 1.0, Under rolling conditions with L4/
H, not close to this value, # decreases because the
energy dissipation rate by friction or discontinuity
of velocity increases.

These findings were obtained in spite of the assump-
tion of a simple velocity field where the cross section
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before rolling keeps a plane. When more complex
deformation phenomena are treated, the upper bound
technique poses the problems of uniqueness and con-
vergence of solutions in optimization, in addition the
difficulties in describing the velocity field. For this rea-
son, finite element method are being used'*22Y, and
rescarch in this direction will be active in the future.
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